Questions?
See the FAQ
or other info.

# Polytope of Type {3,2,6,9}

Atlas Canonical Name : {3,2,6,9}*1944b
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 5
Schlafli Type : {3,2,6,9}
Number of vertices, edges, etc : 3, 3, 18, 81, 27
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,6,3}*648
9-fold quotients : {3,2,6,3}*216
27-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 8, 9)(11,12);;
s3 := ( 5, 6)( 7,11)( 8,10)( 9,12);;
s4 := ( 4, 7)( 5, 9)( 6, 8)(11,12);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s2*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3*s4*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(12)!(2,3);
s1 := Sym(12)!(1,2);
s2 := Sym(12)!( 5, 6)( 8, 9)(11,12);
s3 := Sym(12)!( 5, 6)( 7,11)( 8,10)( 9,12);
s4 := Sym(12)!( 4, 7)( 5, 9)( 6, 8)(11,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s2*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3*s4*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 >;

```

to this polytope