Questions?
See the FAQ
or other info.

Polytope of Type {18,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,12}*1944d
if this polytope has a name.
Group : SmallGroup(1944,805)
Rank : 3
Schlafli Type : {18,12}
Number of vertices, edges, etc : 81, 486, 54
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   9-fold quotients : {6,12}*216a
   27-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 17)( 11, 16)( 12, 18)( 13, 14)
( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 78)( 29, 77)( 30, 76)( 31, 75)
( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 55)( 38, 57)( 39, 56)
( 40, 61)( 41, 63)( 42, 62)( 43, 58)( 44, 60)( 45, 59)( 46, 71)( 47, 70)
( 48, 72)( 49, 68)( 50, 67)( 51, 69)( 52, 65)( 53, 64)( 54, 66)( 82,163)
( 83,165)( 84,164)( 85,169)( 86,171)( 87,170)( 88,166)( 89,168)( 90,167)
( 91,179)( 92,178)( 93,180)( 94,176)( 95,175)( 96,177)( 97,173)( 98,172)
( 99,174)(100,186)(101,185)(102,184)(103,183)(104,182)(105,181)(106,189)
(107,188)(108,187)(109,240)(110,239)(111,238)(112,237)(113,236)(114,235)
(115,243)(116,242)(117,241)(118,217)(119,219)(120,218)(121,223)(122,225)
(123,224)(124,220)(125,222)(126,221)(127,233)(128,232)(129,234)(130,230)
(131,229)(132,231)(133,227)(134,226)(135,228)(136,199)(137,201)(138,200)
(139,205)(140,207)(141,206)(142,202)(143,204)(144,203)(145,215)(146,214)
(147,216)(148,212)(149,211)(150,213)(151,209)(152,208)(153,210)(154,195)
(155,194)(156,193)(157,192)(158,191)(159,190)(160,198)(161,197)(162,196);;
s1 := (  1,136)(  2,137)(  3,138)(  4,143)(  5,144)(  6,142)(  7,141)(  8,139)
(  9,140)( 10,154)( 11,155)( 12,156)( 13,161)( 14,162)( 15,160)( 16,159)
( 17,157)( 18,158)( 19,145)( 20,146)( 21,147)( 22,152)( 23,153)( 24,151)
( 25,150)( 26,148)( 27,149)( 28,236)( 29,237)( 30,235)( 31,243)( 32,241)
( 33,242)( 34,238)( 35,239)( 36,240)( 37,227)( 38,228)( 39,226)( 40,234)
( 41,232)( 42,233)( 43,229)( 44,230)( 45,231)( 46,218)( 47,219)( 48,217)
( 49,225)( 50,223)( 51,224)( 52,220)( 53,221)( 54,222)( 55, 72)( 56, 70)
( 57, 71)( 58, 67)( 59, 68)( 60, 69)( 61, 65)( 62, 66)( 63, 64)( 73, 81)
( 74, 79)( 75, 80)( 82, 90)( 83, 88)( 84, 89)( 91,108)( 92,106)( 93,107)
( 94,103)( 95,104)( 96,105)( 97,101)( 98,102)( 99,100)(109,167)(110,168)
(111,166)(112,165)(113,163)(114,164)(115,169)(116,170)(117,171)(118,185)
(119,186)(120,184)(121,183)(122,181)(123,182)(124,187)(125,188)(126,189)
(127,176)(128,177)(129,175)(130,174)(131,172)(132,173)(133,178)(134,179)
(135,180)(190,199)(191,200)(192,201)(193,206)(194,207)(195,205)(196,204)
(197,202)(198,203)(211,215)(212,216)(213,214);;
s2 := (  1, 15)(  2, 11)(  3, 16)(  4, 18)(  5, 14)(  6, 10)(  7, 12)(  8, 17)
(  9, 13)( 19, 24)( 21, 25)( 22, 27)( 28, 46)( 29, 54)( 30, 50)( 31, 49)
( 32, 48)( 33, 53)( 34, 52)( 35, 51)( 36, 47)( 38, 45)( 39, 41)( 42, 44)
( 56, 63)( 57, 59)( 60, 62)( 64, 73)( 65, 81)( 66, 77)( 67, 76)( 68, 75)
( 69, 80)( 70, 79)( 71, 78)( 72, 74)( 82,177)( 83,173)( 84,178)( 85,180)
( 86,176)( 87,172)( 88,174)( 89,179)( 90,175)( 91,168)( 92,164)( 93,169)
( 94,171)( 95,167)( 96,163)( 97,165)( 98,170)( 99,166)(100,186)(101,182)
(102,187)(103,189)(104,185)(105,181)(106,183)(107,188)(108,184)(109,208)
(110,216)(111,212)(112,211)(113,210)(114,215)(115,214)(116,213)(117,209)
(118,199)(119,207)(120,203)(121,202)(122,201)(123,206)(124,205)(125,204)
(126,200)(127,190)(128,198)(129,194)(130,193)(131,192)(132,197)(133,196)
(134,195)(135,191)(136,217)(137,225)(138,221)(139,220)(140,219)(141,224)
(142,223)(143,222)(144,218)(145,235)(146,243)(147,239)(148,238)(149,237)
(150,242)(151,241)(152,240)(153,236)(154,226)(155,234)(156,230)(157,229)
(158,228)(159,233)(160,232)(161,231)(162,227);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(243)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 17)( 11, 16)( 12, 18)
( 13, 14)( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 78)( 29, 77)( 30, 76)
( 31, 75)( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 55)( 38, 57)
( 39, 56)( 40, 61)( 41, 63)( 42, 62)( 43, 58)( 44, 60)( 45, 59)( 46, 71)
( 47, 70)( 48, 72)( 49, 68)( 50, 67)( 51, 69)( 52, 65)( 53, 64)( 54, 66)
( 82,163)( 83,165)( 84,164)( 85,169)( 86,171)( 87,170)( 88,166)( 89,168)
( 90,167)( 91,179)( 92,178)( 93,180)( 94,176)( 95,175)( 96,177)( 97,173)
( 98,172)( 99,174)(100,186)(101,185)(102,184)(103,183)(104,182)(105,181)
(106,189)(107,188)(108,187)(109,240)(110,239)(111,238)(112,237)(113,236)
(114,235)(115,243)(116,242)(117,241)(118,217)(119,219)(120,218)(121,223)
(122,225)(123,224)(124,220)(125,222)(126,221)(127,233)(128,232)(129,234)
(130,230)(131,229)(132,231)(133,227)(134,226)(135,228)(136,199)(137,201)
(138,200)(139,205)(140,207)(141,206)(142,202)(143,204)(144,203)(145,215)
(146,214)(147,216)(148,212)(149,211)(150,213)(151,209)(152,208)(153,210)
(154,195)(155,194)(156,193)(157,192)(158,191)(159,190)(160,198)(161,197)
(162,196);
s1 := Sym(243)!(  1,136)(  2,137)(  3,138)(  4,143)(  5,144)(  6,142)(  7,141)
(  8,139)(  9,140)( 10,154)( 11,155)( 12,156)( 13,161)( 14,162)( 15,160)
( 16,159)( 17,157)( 18,158)( 19,145)( 20,146)( 21,147)( 22,152)( 23,153)
( 24,151)( 25,150)( 26,148)( 27,149)( 28,236)( 29,237)( 30,235)( 31,243)
( 32,241)( 33,242)( 34,238)( 35,239)( 36,240)( 37,227)( 38,228)( 39,226)
( 40,234)( 41,232)( 42,233)( 43,229)( 44,230)( 45,231)( 46,218)( 47,219)
( 48,217)( 49,225)( 50,223)( 51,224)( 52,220)( 53,221)( 54,222)( 55, 72)
( 56, 70)( 57, 71)( 58, 67)( 59, 68)( 60, 69)( 61, 65)( 62, 66)( 63, 64)
( 73, 81)( 74, 79)( 75, 80)( 82, 90)( 83, 88)( 84, 89)( 91,108)( 92,106)
( 93,107)( 94,103)( 95,104)( 96,105)( 97,101)( 98,102)( 99,100)(109,167)
(110,168)(111,166)(112,165)(113,163)(114,164)(115,169)(116,170)(117,171)
(118,185)(119,186)(120,184)(121,183)(122,181)(123,182)(124,187)(125,188)
(126,189)(127,176)(128,177)(129,175)(130,174)(131,172)(132,173)(133,178)
(134,179)(135,180)(190,199)(191,200)(192,201)(193,206)(194,207)(195,205)
(196,204)(197,202)(198,203)(211,215)(212,216)(213,214);
s2 := Sym(243)!(  1, 15)(  2, 11)(  3, 16)(  4, 18)(  5, 14)(  6, 10)(  7, 12)
(  8, 17)(  9, 13)( 19, 24)( 21, 25)( 22, 27)( 28, 46)( 29, 54)( 30, 50)
( 31, 49)( 32, 48)( 33, 53)( 34, 52)( 35, 51)( 36, 47)( 38, 45)( 39, 41)
( 42, 44)( 56, 63)( 57, 59)( 60, 62)( 64, 73)( 65, 81)( 66, 77)( 67, 76)
( 68, 75)( 69, 80)( 70, 79)( 71, 78)( 72, 74)( 82,177)( 83,173)( 84,178)
( 85,180)( 86,176)( 87,172)( 88,174)( 89,179)( 90,175)( 91,168)( 92,164)
( 93,169)( 94,171)( 95,167)( 96,163)( 97,165)( 98,170)( 99,166)(100,186)
(101,182)(102,187)(103,189)(104,185)(105,181)(106,183)(107,188)(108,184)
(109,208)(110,216)(111,212)(112,211)(113,210)(114,215)(115,214)(116,213)
(117,209)(118,199)(119,207)(120,203)(121,202)(122,201)(123,206)(124,205)
(125,204)(126,200)(127,190)(128,198)(129,194)(130,193)(131,192)(132,197)
(133,196)(134,195)(135,191)(136,217)(137,225)(138,221)(139,220)(140,219)
(141,224)(142,223)(143,222)(144,218)(145,235)(146,243)(147,239)(148,238)
(149,237)(150,242)(151,241)(152,240)(153,236)(154,226)(155,234)(156,230)
(157,229)(158,228)(159,233)(160,232)(161,231)(162,227);
poly := sub<Sym(243)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope