Questions?
See the FAQ
or other info.

Polytope of Type {2,18,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,18}*1944b
if this polytope has a name.
Group : SmallGroup(1944,942)
Rank : 4
Schlafli Type : {2,18,18}
Number of vertices, edges, etc : 2, 27, 243, 27
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,18}*648c, {2,18,6}*648c
   9-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7,  8)( 10, 11)( 12, 24)( 13, 26)( 14, 25)( 15, 27)( 16, 29)
( 17, 28)( 18, 21)( 19, 23)( 20, 22)( 30, 58)( 31, 57)( 32, 59)( 33, 61)
( 34, 60)( 35, 62)( 36, 64)( 37, 63)( 38, 65)( 39, 79)( 40, 78)( 41, 80)
( 42, 82)( 43, 81)( 44, 83)( 45, 76)( 46, 75)( 47, 77)( 48, 73)( 49, 72)
( 50, 74)( 51, 67)( 52, 66)( 53, 68)( 54, 70)( 55, 69)( 56, 71)( 85, 86)
( 88, 89)( 91, 92)( 93,105)( 94,107)( 95,106)( 96,108)( 97,110)( 98,109)
( 99,102)(100,104)(101,103)(111,139)(112,138)(113,140)(114,142)(115,141)
(116,143)(117,145)(118,144)(119,146)(120,160)(121,159)(122,161)(123,163)
(124,162)(125,164)(126,157)(127,156)(128,158)(129,154)(130,153)(131,155)
(132,148)(133,147)(134,149)(135,151)(136,150)(137,152)(166,167)(169,170)
(172,173)(174,186)(175,188)(176,187)(177,189)(178,191)(179,190)(180,183)
(181,185)(182,184)(192,220)(193,219)(194,221)(195,223)(196,222)(197,224)
(198,226)(199,225)(200,227)(201,241)(202,240)(203,242)(204,244)(205,243)
(206,245)(207,238)(208,237)(209,239)(210,235)(211,234)(212,236)(213,229)
(214,228)(215,230)(216,232)(217,231)(218,233);;
s2 := (  3, 30)(  4, 32)(  5, 31)(  6, 36)(  7, 38)(  8, 37)(  9, 33)( 10, 35)
( 11, 34)( 12, 41)( 13, 40)( 14, 39)( 15, 47)( 16, 46)( 17, 45)( 18, 44)
( 19, 43)( 20, 42)( 21, 49)( 22, 48)( 23, 50)( 24, 55)( 25, 54)( 26, 56)
( 27, 52)( 28, 51)( 29, 53)( 57, 58)( 60, 64)( 61, 63)( 62, 65)( 67, 68)
( 69, 72)( 70, 74)( 71, 73)( 75, 77)( 78, 83)( 79, 82)( 80, 81)( 84,198)
( 85,200)( 86,199)( 87,195)( 88,197)( 89,196)( 90,192)( 91,194)( 92,193)
( 93,209)( 94,208)( 95,207)( 96,206)( 97,205)( 98,204)( 99,203)(100,202)
(101,201)(102,217)(103,216)(104,218)(105,214)(106,213)(107,215)(108,211)
(109,210)(110,212)(111,171)(112,173)(113,172)(114,168)(115,170)(116,169)
(117,165)(118,167)(119,166)(120,182)(121,181)(122,180)(123,179)(124,178)
(125,177)(126,176)(127,175)(128,174)(129,190)(130,189)(131,191)(132,187)
(133,186)(134,188)(135,184)(136,183)(137,185)(138,226)(139,225)(140,227)
(141,223)(142,222)(143,224)(144,220)(145,219)(146,221)(147,234)(148,236)
(149,235)(150,231)(151,233)(152,232)(153,228)(154,230)(155,229)(156,245)
(157,244)(158,243)(159,242)(160,241)(161,240)(162,239)(163,238)(164,237);;
s3 := (  3, 84)(  4, 85)(  5, 86)(  6, 90)(  7, 91)(  8, 92)(  9, 87)( 10, 88)
( 11, 89)( 12,102)( 13,103)( 14,104)( 15,108)( 16,109)( 17,110)( 18,105)
( 19,106)( 20,107)( 21, 93)( 22, 94)( 23, 95)( 24, 99)( 25,100)( 26,101)
( 27, 96)( 28, 97)( 29, 98)( 30,120)( 31,121)( 32,122)( 33,126)( 34,127)
( 35,128)( 36,123)( 37,124)( 38,125)( 39,111)( 40,112)( 41,113)( 42,117)
( 43,118)( 44,119)( 45,114)( 46,115)( 47,116)( 48,129)( 49,130)( 50,131)
( 51,135)( 52,136)( 53,137)( 54,132)( 55,133)( 56,134)( 57,159)( 58,160)
( 59,161)( 60,156)( 61,157)( 62,158)( 63,162)( 64,163)( 65,164)( 66,150)
( 67,151)( 68,152)( 69,147)( 70,148)( 71,149)( 72,153)( 73,154)( 74,155)
( 75,141)( 76,142)( 77,143)( 78,138)( 79,139)( 80,140)( 81,144)( 82,145)
( 83,146)(165,171)(166,172)(167,173)(174,189)(175,190)(176,191)(177,186)
(178,187)(179,188)(180,183)(181,184)(182,185)(192,207)(193,208)(194,209)
(195,204)(196,205)(197,206)(198,201)(199,202)(200,203)(210,216)(211,217)
(212,218)(219,237)(220,238)(221,239)(222,243)(223,244)(224,245)(225,240)
(226,241)(227,242)(231,234)(232,235)(233,236);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s1*s2*s3*s1*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(245)!(1,2);
s1 := Sym(245)!(  4,  5)(  7,  8)( 10, 11)( 12, 24)( 13, 26)( 14, 25)( 15, 27)
( 16, 29)( 17, 28)( 18, 21)( 19, 23)( 20, 22)( 30, 58)( 31, 57)( 32, 59)
( 33, 61)( 34, 60)( 35, 62)( 36, 64)( 37, 63)( 38, 65)( 39, 79)( 40, 78)
( 41, 80)( 42, 82)( 43, 81)( 44, 83)( 45, 76)( 46, 75)( 47, 77)( 48, 73)
( 49, 72)( 50, 74)( 51, 67)( 52, 66)( 53, 68)( 54, 70)( 55, 69)( 56, 71)
( 85, 86)( 88, 89)( 91, 92)( 93,105)( 94,107)( 95,106)( 96,108)( 97,110)
( 98,109)( 99,102)(100,104)(101,103)(111,139)(112,138)(113,140)(114,142)
(115,141)(116,143)(117,145)(118,144)(119,146)(120,160)(121,159)(122,161)
(123,163)(124,162)(125,164)(126,157)(127,156)(128,158)(129,154)(130,153)
(131,155)(132,148)(133,147)(134,149)(135,151)(136,150)(137,152)(166,167)
(169,170)(172,173)(174,186)(175,188)(176,187)(177,189)(178,191)(179,190)
(180,183)(181,185)(182,184)(192,220)(193,219)(194,221)(195,223)(196,222)
(197,224)(198,226)(199,225)(200,227)(201,241)(202,240)(203,242)(204,244)
(205,243)(206,245)(207,238)(208,237)(209,239)(210,235)(211,234)(212,236)
(213,229)(214,228)(215,230)(216,232)(217,231)(218,233);
s2 := Sym(245)!(  3, 30)(  4, 32)(  5, 31)(  6, 36)(  7, 38)(  8, 37)(  9, 33)
( 10, 35)( 11, 34)( 12, 41)( 13, 40)( 14, 39)( 15, 47)( 16, 46)( 17, 45)
( 18, 44)( 19, 43)( 20, 42)( 21, 49)( 22, 48)( 23, 50)( 24, 55)( 25, 54)
( 26, 56)( 27, 52)( 28, 51)( 29, 53)( 57, 58)( 60, 64)( 61, 63)( 62, 65)
( 67, 68)( 69, 72)( 70, 74)( 71, 73)( 75, 77)( 78, 83)( 79, 82)( 80, 81)
( 84,198)( 85,200)( 86,199)( 87,195)( 88,197)( 89,196)( 90,192)( 91,194)
( 92,193)( 93,209)( 94,208)( 95,207)( 96,206)( 97,205)( 98,204)( 99,203)
(100,202)(101,201)(102,217)(103,216)(104,218)(105,214)(106,213)(107,215)
(108,211)(109,210)(110,212)(111,171)(112,173)(113,172)(114,168)(115,170)
(116,169)(117,165)(118,167)(119,166)(120,182)(121,181)(122,180)(123,179)
(124,178)(125,177)(126,176)(127,175)(128,174)(129,190)(130,189)(131,191)
(132,187)(133,186)(134,188)(135,184)(136,183)(137,185)(138,226)(139,225)
(140,227)(141,223)(142,222)(143,224)(144,220)(145,219)(146,221)(147,234)
(148,236)(149,235)(150,231)(151,233)(152,232)(153,228)(154,230)(155,229)
(156,245)(157,244)(158,243)(159,242)(160,241)(161,240)(162,239)(163,238)
(164,237);
s3 := Sym(245)!(  3, 84)(  4, 85)(  5, 86)(  6, 90)(  7, 91)(  8, 92)(  9, 87)
( 10, 88)( 11, 89)( 12,102)( 13,103)( 14,104)( 15,108)( 16,109)( 17,110)
( 18,105)( 19,106)( 20,107)( 21, 93)( 22, 94)( 23, 95)( 24, 99)( 25,100)
( 26,101)( 27, 96)( 28, 97)( 29, 98)( 30,120)( 31,121)( 32,122)( 33,126)
( 34,127)( 35,128)( 36,123)( 37,124)( 38,125)( 39,111)( 40,112)( 41,113)
( 42,117)( 43,118)( 44,119)( 45,114)( 46,115)( 47,116)( 48,129)( 49,130)
( 50,131)( 51,135)( 52,136)( 53,137)( 54,132)( 55,133)( 56,134)( 57,159)
( 58,160)( 59,161)( 60,156)( 61,157)( 62,158)( 63,162)( 64,163)( 65,164)
( 66,150)( 67,151)( 68,152)( 69,147)( 70,148)( 71,149)( 72,153)( 73,154)
( 74,155)( 75,141)( 76,142)( 77,143)( 78,138)( 79,139)( 80,140)( 81,144)
( 82,145)( 83,146)(165,171)(166,172)(167,173)(174,189)(175,190)(176,191)
(177,186)(178,187)(179,188)(180,183)(181,184)(182,185)(192,207)(193,208)
(194,209)(195,204)(196,205)(197,206)(198,201)(199,202)(200,203)(210,216)
(211,217)(212,218)(219,237)(220,238)(221,239)(222,243)(223,244)(224,245)
(225,240)(226,241)(227,242)(231,234)(232,235)(233,236);
poly := sub<Sym(245)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2 >; 
 

to this polytope