Questions?
See the FAQ
or other info.

Polytope of Type {2,18,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,18}*1944g
if this polytope has a name.
Group : SmallGroup(1944,950)
Rank : 4
Schlafli Type : {2,18,18}
Number of vertices, edges, etc : 2, 27, 243, 27
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,6,18}*648a, {2,18,6}*648b
   9-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 30, 59)( 31, 58)( 32, 57)( 33, 65)
( 34, 64)( 35, 63)( 36, 62)( 37, 61)( 38, 60)( 39, 68)( 40, 67)( 41, 66)
( 42, 74)( 43, 73)( 44, 72)( 45, 71)( 46, 70)( 47, 69)( 48, 77)( 49, 76)
( 50, 75)( 51, 83)( 52, 82)( 53, 81)( 54, 80)( 55, 79)( 56, 78)( 85, 86)
( 87, 90)( 88, 92)( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)
(105,108)(106,110)(107,109)(111,140)(112,139)(113,138)(114,146)(115,145)
(116,144)(117,143)(118,142)(119,141)(120,149)(121,148)(122,147)(123,155)
(124,154)(125,153)(126,152)(127,151)(128,150)(129,158)(130,157)(131,156)
(132,164)(133,163)(134,162)(135,161)(136,160)(137,159)(166,167)(168,171)
(169,173)(170,172)(175,176)(177,180)(178,182)(179,181)(184,185)(186,189)
(187,191)(188,190)(192,221)(193,220)(194,219)(195,227)(196,226)(197,225)
(198,224)(199,223)(200,222)(201,230)(202,229)(203,228)(204,236)(205,235)
(206,234)(207,233)(208,232)(209,231)(210,239)(211,238)(212,237)(213,245)
(214,244)(215,243)(216,242)(217,241)(218,240);;
s2 := (  3, 30)(  4, 32)(  5, 31)(  6, 35)(  7, 34)(  8, 33)(  9, 37)( 10, 36)
( 11, 38)( 12, 48)( 13, 50)( 14, 49)( 15, 53)( 16, 52)( 17, 51)( 18, 55)
( 19, 54)( 20, 56)( 21, 39)( 22, 41)( 23, 40)( 24, 44)( 25, 43)( 26, 42)
( 27, 46)( 28, 45)( 29, 47)( 57, 59)( 60, 61)( 64, 65)( 66, 77)( 67, 76)
( 68, 75)( 69, 79)( 70, 78)( 71, 80)( 72, 81)( 73, 83)( 74, 82)( 84,210)
( 85,212)( 86,211)( 87,215)( 88,214)( 89,213)( 90,217)( 91,216)( 92,218)
( 93,201)( 94,203)( 95,202)( 96,206)( 97,205)( 98,204)( 99,208)(100,207)
(101,209)(102,192)(103,194)(104,193)(105,197)(106,196)(107,195)(108,199)
(109,198)(110,200)(111,183)(112,185)(113,184)(114,188)(115,187)(116,186)
(117,190)(118,189)(119,191)(120,174)(121,176)(122,175)(123,179)(124,178)
(125,177)(126,181)(127,180)(128,182)(129,165)(130,167)(131,166)(132,170)
(133,169)(134,168)(135,172)(136,171)(137,173)(138,239)(139,238)(140,237)
(141,241)(142,240)(143,242)(144,243)(145,245)(146,244)(147,230)(148,229)
(149,228)(150,232)(151,231)(152,233)(153,234)(154,236)(155,235)(156,221)
(157,220)(158,219)(159,223)(160,222)(161,224)(162,225)(163,227)(164,226);;
s3 := (  3, 84)(  4, 85)(  5, 86)(  6, 90)(  7, 91)(  8, 92)(  9, 87)( 10, 88)
( 11, 89)( 12,102)( 13,103)( 14,104)( 15,108)( 16,109)( 17,110)( 18,105)
( 19,106)( 20,107)( 21, 93)( 22, 94)( 23, 95)( 24, 99)( 25,100)( 26,101)
( 27, 96)( 28, 97)( 29, 98)( 30,114)( 31,115)( 32,116)( 33,111)( 34,112)
( 35,113)( 36,117)( 37,118)( 38,119)( 39,132)( 40,133)( 41,134)( 42,129)
( 43,130)( 44,131)( 45,135)( 46,136)( 47,137)( 48,123)( 49,124)( 50,125)
( 51,120)( 52,121)( 53,122)( 54,126)( 55,127)( 56,128)( 57,144)( 58,145)
( 59,146)( 60,141)( 61,142)( 62,143)( 63,138)( 64,139)( 65,140)( 66,162)
( 67,163)( 68,164)( 69,159)( 70,160)( 71,161)( 72,156)( 73,157)( 74,158)
( 75,153)( 76,154)( 77,155)( 78,150)( 79,151)( 80,152)( 81,147)( 82,148)
( 83,149)(165,183)(166,184)(167,185)(168,189)(169,190)(170,191)(171,186)
(172,187)(173,188)(177,180)(178,181)(179,182)(192,213)(193,214)(194,215)
(195,210)(196,211)(197,212)(198,216)(199,217)(200,218)(201,204)(202,205)
(203,206)(219,243)(220,244)(221,245)(222,240)(223,241)(224,242)(225,237)
(226,238)(227,239)(228,234)(229,235)(230,236);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(245)!(1,2);
s1 := Sym(245)!(  4,  5)(  6,  9)(  7, 11)(  8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 30, 59)( 31, 58)( 32, 57)
( 33, 65)( 34, 64)( 35, 63)( 36, 62)( 37, 61)( 38, 60)( 39, 68)( 40, 67)
( 41, 66)( 42, 74)( 43, 73)( 44, 72)( 45, 71)( 46, 70)( 47, 69)( 48, 77)
( 49, 76)( 50, 75)( 51, 83)( 52, 82)( 53, 81)( 54, 80)( 55, 79)( 56, 78)
( 85, 86)( 87, 90)( 88, 92)( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)
(103,104)(105,108)(106,110)(107,109)(111,140)(112,139)(113,138)(114,146)
(115,145)(116,144)(117,143)(118,142)(119,141)(120,149)(121,148)(122,147)
(123,155)(124,154)(125,153)(126,152)(127,151)(128,150)(129,158)(130,157)
(131,156)(132,164)(133,163)(134,162)(135,161)(136,160)(137,159)(166,167)
(168,171)(169,173)(170,172)(175,176)(177,180)(178,182)(179,181)(184,185)
(186,189)(187,191)(188,190)(192,221)(193,220)(194,219)(195,227)(196,226)
(197,225)(198,224)(199,223)(200,222)(201,230)(202,229)(203,228)(204,236)
(205,235)(206,234)(207,233)(208,232)(209,231)(210,239)(211,238)(212,237)
(213,245)(214,244)(215,243)(216,242)(217,241)(218,240);
s2 := Sym(245)!(  3, 30)(  4, 32)(  5, 31)(  6, 35)(  7, 34)(  8, 33)(  9, 37)
( 10, 36)( 11, 38)( 12, 48)( 13, 50)( 14, 49)( 15, 53)( 16, 52)( 17, 51)
( 18, 55)( 19, 54)( 20, 56)( 21, 39)( 22, 41)( 23, 40)( 24, 44)( 25, 43)
( 26, 42)( 27, 46)( 28, 45)( 29, 47)( 57, 59)( 60, 61)( 64, 65)( 66, 77)
( 67, 76)( 68, 75)( 69, 79)( 70, 78)( 71, 80)( 72, 81)( 73, 83)( 74, 82)
( 84,210)( 85,212)( 86,211)( 87,215)( 88,214)( 89,213)( 90,217)( 91,216)
( 92,218)( 93,201)( 94,203)( 95,202)( 96,206)( 97,205)( 98,204)( 99,208)
(100,207)(101,209)(102,192)(103,194)(104,193)(105,197)(106,196)(107,195)
(108,199)(109,198)(110,200)(111,183)(112,185)(113,184)(114,188)(115,187)
(116,186)(117,190)(118,189)(119,191)(120,174)(121,176)(122,175)(123,179)
(124,178)(125,177)(126,181)(127,180)(128,182)(129,165)(130,167)(131,166)
(132,170)(133,169)(134,168)(135,172)(136,171)(137,173)(138,239)(139,238)
(140,237)(141,241)(142,240)(143,242)(144,243)(145,245)(146,244)(147,230)
(148,229)(149,228)(150,232)(151,231)(152,233)(153,234)(154,236)(155,235)
(156,221)(157,220)(158,219)(159,223)(160,222)(161,224)(162,225)(163,227)
(164,226);
s3 := Sym(245)!(  3, 84)(  4, 85)(  5, 86)(  6, 90)(  7, 91)(  8, 92)(  9, 87)
( 10, 88)( 11, 89)( 12,102)( 13,103)( 14,104)( 15,108)( 16,109)( 17,110)
( 18,105)( 19,106)( 20,107)( 21, 93)( 22, 94)( 23, 95)( 24, 99)( 25,100)
( 26,101)( 27, 96)( 28, 97)( 29, 98)( 30,114)( 31,115)( 32,116)( 33,111)
( 34,112)( 35,113)( 36,117)( 37,118)( 38,119)( 39,132)( 40,133)( 41,134)
( 42,129)( 43,130)( 44,131)( 45,135)( 46,136)( 47,137)( 48,123)( 49,124)
( 50,125)( 51,120)( 52,121)( 53,122)( 54,126)( 55,127)( 56,128)( 57,144)
( 58,145)( 59,146)( 60,141)( 61,142)( 62,143)( 63,138)( 64,139)( 65,140)
( 66,162)( 67,163)( 68,164)( 69,159)( 70,160)( 71,161)( 72,156)( 73,157)
( 74,158)( 75,153)( 76,154)( 77,155)( 78,150)( 79,151)( 80,152)( 81,147)
( 82,148)( 83,149)(165,183)(166,184)(167,185)(168,189)(169,190)(170,191)
(171,186)(172,187)(173,188)(177,180)(178,181)(179,182)(192,213)(193,214)
(194,215)(195,210)(196,211)(197,212)(198,216)(199,217)(200,218)(201,204)
(202,205)(203,206)(219,243)(220,244)(221,245)(222,240)(223,241)(224,242)
(225,237)(226,238)(227,239)(228,234)(229,235)(230,236);
poly := sub<Sym(245)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s3*s2*s1*s3*s2*s3*s2*s1*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s1*s2 >; 
 

to this polytope