Questions?
See the FAQ
or other info.

Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*1944c
if this polytope has a name.
Group : SmallGroup(1944,956)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 162, 486, 162
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,3}*972
   3-fold quotients : {6,6}*648c
   6-fold quotients : {6,3}*324
   9-fold quotients : {6,6}*216a
   18-fold quotients : {6,3}*108
   27-fold quotients : {6,6}*72b
   54-fold quotients : {6,3}*36
   81-fold quotients : {2,6}*24
   162-fold quotients : {2,3}*12
   243-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 23)( 14, 22)
( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 28, 55)( 29, 57)( 30, 56)( 31, 58)
( 32, 60)( 33, 59)( 34, 61)( 35, 63)( 36, 62)( 37, 74)( 38, 73)( 39, 75)
( 40, 77)( 41, 76)( 42, 78)( 43, 80)( 44, 79)( 45, 81)( 46, 65)( 47, 64)
( 48, 66)( 49, 68)( 50, 67)( 51, 69)( 52, 71)( 53, 70)( 54, 72)( 83, 84)
( 86, 87)( 89, 90)( 91,101)( 92,100)( 93,102)( 94,104)( 95,103)( 96,105)
( 97,107)( 98,106)( 99,108)(109,136)(110,138)(111,137)(112,139)(113,141)
(114,140)(115,142)(116,144)(117,143)(118,155)(119,154)(120,156)(121,158)
(122,157)(123,159)(124,161)(125,160)(126,162)(127,146)(128,145)(129,147)
(130,149)(131,148)(132,150)(133,152)(134,151)(135,153)(164,165)(167,168)
(170,171)(172,182)(173,181)(174,183)(175,185)(176,184)(177,186)(178,188)
(179,187)(180,189)(190,217)(191,219)(192,218)(193,220)(194,222)(195,221)
(196,223)(197,225)(198,224)(199,236)(200,235)(201,237)(202,239)(203,238)
(204,240)(205,242)(206,241)(207,243)(208,227)(209,226)(210,228)(211,230)
(212,229)(213,231)(214,233)(215,232)(216,234)(245,246)(248,249)(251,252)
(253,263)(254,262)(255,264)(256,266)(257,265)(258,267)(259,269)(260,268)
(261,270)(271,298)(272,300)(273,299)(274,301)(275,303)(276,302)(277,304)
(278,306)(279,305)(280,317)(281,316)(282,318)(283,320)(284,319)(285,321)
(286,323)(287,322)(288,324)(289,308)(290,307)(291,309)(292,311)(293,310)
(294,312)(295,314)(296,313)(297,315)(326,327)(329,330)(332,333)(334,344)
(335,343)(336,345)(337,347)(338,346)(339,348)(340,350)(341,349)(342,351)
(352,379)(353,381)(354,380)(355,382)(356,384)(357,383)(358,385)(359,387)
(360,386)(361,398)(362,397)(363,399)(364,401)(365,400)(366,402)(367,404)
(368,403)(369,405)(370,389)(371,388)(372,390)(373,392)(374,391)(375,393)
(376,395)(377,394)(378,396)(407,408)(410,411)(413,414)(415,425)(416,424)
(417,426)(418,428)(419,427)(420,429)(421,431)(422,430)(423,432)(433,460)
(434,462)(435,461)(436,463)(437,465)(438,464)(439,466)(440,468)(441,467)
(442,479)(443,478)(444,480)(445,482)(446,481)(447,483)(448,485)(449,484)
(450,486)(451,470)(452,469)(453,471)(454,473)(455,472)(456,474)(457,476)
(458,475)(459,477);;
s1 := (  1, 28)(  2, 29)(  3, 30)(  4, 35)(  5, 36)(  6, 34)(  7, 33)(  8, 31)
(  9, 32)( 10, 45)( 11, 43)( 12, 44)( 13, 40)( 14, 41)( 15, 42)( 16, 38)
( 17, 39)( 18, 37)( 19, 50)( 20, 51)( 21, 49)( 22, 48)( 23, 46)( 24, 47)
( 25, 52)( 26, 53)( 27, 54)( 58, 62)( 59, 63)( 60, 61)( 64, 72)( 65, 70)
( 66, 71)( 73, 77)( 74, 78)( 75, 76)( 82,195)( 83,193)( 84,194)( 85,190)
( 86,191)( 87,192)( 88,197)( 89,198)( 90,196)( 91,200)( 92,201)( 93,199)
( 94,207)( 95,205)( 96,206)( 97,202)( 98,203)( 99,204)(100,214)(101,215)
(102,216)(103,212)(104,213)(105,211)(106,210)(107,208)(108,209)(109,166)
(110,167)(111,168)(112,164)(113,165)(114,163)(115,171)(116,169)(117,170)
(118,174)(119,172)(120,173)(121,178)(122,179)(123,180)(124,176)(125,177)
(126,175)(127,188)(128,189)(129,187)(130,186)(131,184)(132,185)(133,181)
(134,182)(135,183)(136,221)(137,222)(138,220)(139,219)(140,217)(141,218)
(142,223)(143,224)(144,225)(145,226)(146,227)(147,228)(148,233)(149,234)
(150,232)(151,231)(152,229)(153,230)(154,243)(155,241)(156,242)(157,238)
(158,239)(159,240)(160,236)(161,237)(162,235)(244,271)(245,272)(246,273)
(247,278)(248,279)(249,277)(250,276)(251,274)(252,275)(253,288)(254,286)
(255,287)(256,283)(257,284)(258,285)(259,281)(260,282)(261,280)(262,293)
(263,294)(264,292)(265,291)(266,289)(267,290)(268,295)(269,296)(270,297)
(301,305)(302,306)(303,304)(307,315)(308,313)(309,314)(316,320)(317,321)
(318,319)(325,438)(326,436)(327,437)(328,433)(329,434)(330,435)(331,440)
(332,441)(333,439)(334,443)(335,444)(336,442)(337,450)(338,448)(339,449)
(340,445)(341,446)(342,447)(343,457)(344,458)(345,459)(346,455)(347,456)
(348,454)(349,453)(350,451)(351,452)(352,409)(353,410)(354,411)(355,407)
(356,408)(357,406)(358,414)(359,412)(360,413)(361,417)(362,415)(363,416)
(364,421)(365,422)(366,423)(367,419)(368,420)(369,418)(370,431)(371,432)
(372,430)(373,429)(374,427)(375,428)(376,424)(377,425)(378,426)(379,464)
(380,465)(381,463)(382,462)(383,460)(384,461)(385,466)(386,467)(387,468)
(388,469)(389,470)(390,471)(391,476)(392,477)(393,475)(394,474)(395,472)
(396,473)(397,486)(398,484)(399,485)(400,481)(401,482)(402,483)(403,479)
(404,480)(405,478);;
s2 := (  1,325)(  2,326)(  3,327)(  4,331)(  5,332)(  6,333)(  7,328)(  8,329)
(  9,330)( 10,334)( 11,335)( 12,336)( 13,340)( 14,341)( 15,342)( 16,337)
( 17,338)( 18,339)( 19,343)( 20,344)( 21,345)( 22,349)( 23,350)( 24,351)
( 25,346)( 26,347)( 27,348)( 28,401)( 29,402)( 30,400)( 31,398)( 32,399)
( 33,397)( 34,404)( 35,405)( 36,403)( 37,382)( 38,383)( 39,384)( 40,379)
( 41,380)( 42,381)( 43,385)( 44,386)( 45,387)( 46,391)( 47,392)( 48,393)
( 49,388)( 50,389)( 51,390)( 52,394)( 53,395)( 54,396)( 55,364)( 56,365)
( 57,366)( 58,361)( 59,362)( 60,363)( 61,367)( 62,368)( 63,369)( 64,373)
( 65,374)( 66,375)( 67,370)( 68,371)( 69,372)( 70,376)( 71,377)( 72,378)
( 73,357)( 74,355)( 75,356)( 76,354)( 77,352)( 78,353)( 79,360)( 80,358)
( 81,359)( 82,244)( 83,245)( 84,246)( 85,250)( 86,251)( 87,252)( 88,247)
( 89,248)( 90,249)( 91,253)( 92,254)( 93,255)( 94,259)( 95,260)( 96,261)
( 97,256)( 98,257)( 99,258)(100,262)(101,263)(102,264)(103,268)(104,269)
(105,270)(106,265)(107,266)(108,267)(109,320)(110,321)(111,319)(112,317)
(113,318)(114,316)(115,323)(116,324)(117,322)(118,301)(119,302)(120,303)
(121,298)(122,299)(123,300)(124,304)(125,305)(126,306)(127,310)(128,311)
(129,312)(130,307)(131,308)(132,309)(133,313)(134,314)(135,315)(136,283)
(137,284)(138,285)(139,280)(140,281)(141,282)(142,286)(143,287)(144,288)
(145,292)(146,293)(147,294)(148,289)(149,290)(150,291)(151,295)(152,296)
(153,297)(154,276)(155,274)(156,275)(157,273)(158,271)(159,272)(160,279)
(161,277)(162,278)(163,409)(164,410)(165,411)(166,406)(167,407)(168,408)
(169,412)(170,413)(171,414)(172,418)(173,419)(174,420)(175,415)(176,416)
(177,417)(178,421)(179,422)(180,423)(181,427)(182,428)(183,429)(184,424)
(185,425)(186,426)(187,430)(188,431)(189,432)(190,486)(191,484)(192,485)
(193,483)(194,481)(195,482)(196,480)(197,478)(198,479)(199,467)(200,468)
(201,466)(202,464)(203,465)(204,463)(205,461)(206,462)(207,460)(208,476)
(209,477)(210,475)(211,473)(212,474)(213,472)(214,470)(215,471)(216,469)
(217,450)(218,448)(219,449)(220,447)(221,445)(222,446)(223,444)(224,442)
(225,443)(226,459)(227,457)(228,458)(229,456)(230,454)(231,455)(232,453)
(233,451)(234,452)(235,440)(236,441)(237,439)(238,437)(239,438)(240,436)
(241,434)(242,435)(243,433);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(486)!(  2,  3)(  5,  6)(  8,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 23)
( 14, 22)( 15, 24)( 16, 26)( 17, 25)( 18, 27)( 28, 55)( 29, 57)( 30, 56)
( 31, 58)( 32, 60)( 33, 59)( 34, 61)( 35, 63)( 36, 62)( 37, 74)( 38, 73)
( 39, 75)( 40, 77)( 41, 76)( 42, 78)( 43, 80)( 44, 79)( 45, 81)( 46, 65)
( 47, 64)( 48, 66)( 49, 68)( 50, 67)( 51, 69)( 52, 71)( 53, 70)( 54, 72)
( 83, 84)( 86, 87)( 89, 90)( 91,101)( 92,100)( 93,102)( 94,104)( 95,103)
( 96,105)( 97,107)( 98,106)( 99,108)(109,136)(110,138)(111,137)(112,139)
(113,141)(114,140)(115,142)(116,144)(117,143)(118,155)(119,154)(120,156)
(121,158)(122,157)(123,159)(124,161)(125,160)(126,162)(127,146)(128,145)
(129,147)(130,149)(131,148)(132,150)(133,152)(134,151)(135,153)(164,165)
(167,168)(170,171)(172,182)(173,181)(174,183)(175,185)(176,184)(177,186)
(178,188)(179,187)(180,189)(190,217)(191,219)(192,218)(193,220)(194,222)
(195,221)(196,223)(197,225)(198,224)(199,236)(200,235)(201,237)(202,239)
(203,238)(204,240)(205,242)(206,241)(207,243)(208,227)(209,226)(210,228)
(211,230)(212,229)(213,231)(214,233)(215,232)(216,234)(245,246)(248,249)
(251,252)(253,263)(254,262)(255,264)(256,266)(257,265)(258,267)(259,269)
(260,268)(261,270)(271,298)(272,300)(273,299)(274,301)(275,303)(276,302)
(277,304)(278,306)(279,305)(280,317)(281,316)(282,318)(283,320)(284,319)
(285,321)(286,323)(287,322)(288,324)(289,308)(290,307)(291,309)(292,311)
(293,310)(294,312)(295,314)(296,313)(297,315)(326,327)(329,330)(332,333)
(334,344)(335,343)(336,345)(337,347)(338,346)(339,348)(340,350)(341,349)
(342,351)(352,379)(353,381)(354,380)(355,382)(356,384)(357,383)(358,385)
(359,387)(360,386)(361,398)(362,397)(363,399)(364,401)(365,400)(366,402)
(367,404)(368,403)(369,405)(370,389)(371,388)(372,390)(373,392)(374,391)
(375,393)(376,395)(377,394)(378,396)(407,408)(410,411)(413,414)(415,425)
(416,424)(417,426)(418,428)(419,427)(420,429)(421,431)(422,430)(423,432)
(433,460)(434,462)(435,461)(436,463)(437,465)(438,464)(439,466)(440,468)
(441,467)(442,479)(443,478)(444,480)(445,482)(446,481)(447,483)(448,485)
(449,484)(450,486)(451,470)(452,469)(453,471)(454,473)(455,472)(456,474)
(457,476)(458,475)(459,477);
s1 := Sym(486)!(  1, 28)(  2, 29)(  3, 30)(  4, 35)(  5, 36)(  6, 34)(  7, 33)
(  8, 31)(  9, 32)( 10, 45)( 11, 43)( 12, 44)( 13, 40)( 14, 41)( 15, 42)
( 16, 38)( 17, 39)( 18, 37)( 19, 50)( 20, 51)( 21, 49)( 22, 48)( 23, 46)
( 24, 47)( 25, 52)( 26, 53)( 27, 54)( 58, 62)( 59, 63)( 60, 61)( 64, 72)
( 65, 70)( 66, 71)( 73, 77)( 74, 78)( 75, 76)( 82,195)( 83,193)( 84,194)
( 85,190)( 86,191)( 87,192)( 88,197)( 89,198)( 90,196)( 91,200)( 92,201)
( 93,199)( 94,207)( 95,205)( 96,206)( 97,202)( 98,203)( 99,204)(100,214)
(101,215)(102,216)(103,212)(104,213)(105,211)(106,210)(107,208)(108,209)
(109,166)(110,167)(111,168)(112,164)(113,165)(114,163)(115,171)(116,169)
(117,170)(118,174)(119,172)(120,173)(121,178)(122,179)(123,180)(124,176)
(125,177)(126,175)(127,188)(128,189)(129,187)(130,186)(131,184)(132,185)
(133,181)(134,182)(135,183)(136,221)(137,222)(138,220)(139,219)(140,217)
(141,218)(142,223)(143,224)(144,225)(145,226)(146,227)(147,228)(148,233)
(149,234)(150,232)(151,231)(152,229)(153,230)(154,243)(155,241)(156,242)
(157,238)(158,239)(159,240)(160,236)(161,237)(162,235)(244,271)(245,272)
(246,273)(247,278)(248,279)(249,277)(250,276)(251,274)(252,275)(253,288)
(254,286)(255,287)(256,283)(257,284)(258,285)(259,281)(260,282)(261,280)
(262,293)(263,294)(264,292)(265,291)(266,289)(267,290)(268,295)(269,296)
(270,297)(301,305)(302,306)(303,304)(307,315)(308,313)(309,314)(316,320)
(317,321)(318,319)(325,438)(326,436)(327,437)(328,433)(329,434)(330,435)
(331,440)(332,441)(333,439)(334,443)(335,444)(336,442)(337,450)(338,448)
(339,449)(340,445)(341,446)(342,447)(343,457)(344,458)(345,459)(346,455)
(347,456)(348,454)(349,453)(350,451)(351,452)(352,409)(353,410)(354,411)
(355,407)(356,408)(357,406)(358,414)(359,412)(360,413)(361,417)(362,415)
(363,416)(364,421)(365,422)(366,423)(367,419)(368,420)(369,418)(370,431)
(371,432)(372,430)(373,429)(374,427)(375,428)(376,424)(377,425)(378,426)
(379,464)(380,465)(381,463)(382,462)(383,460)(384,461)(385,466)(386,467)
(387,468)(388,469)(389,470)(390,471)(391,476)(392,477)(393,475)(394,474)
(395,472)(396,473)(397,486)(398,484)(399,485)(400,481)(401,482)(402,483)
(403,479)(404,480)(405,478);
s2 := Sym(486)!(  1,325)(  2,326)(  3,327)(  4,331)(  5,332)(  6,333)(  7,328)
(  8,329)(  9,330)( 10,334)( 11,335)( 12,336)( 13,340)( 14,341)( 15,342)
( 16,337)( 17,338)( 18,339)( 19,343)( 20,344)( 21,345)( 22,349)( 23,350)
( 24,351)( 25,346)( 26,347)( 27,348)( 28,401)( 29,402)( 30,400)( 31,398)
( 32,399)( 33,397)( 34,404)( 35,405)( 36,403)( 37,382)( 38,383)( 39,384)
( 40,379)( 41,380)( 42,381)( 43,385)( 44,386)( 45,387)( 46,391)( 47,392)
( 48,393)( 49,388)( 50,389)( 51,390)( 52,394)( 53,395)( 54,396)( 55,364)
( 56,365)( 57,366)( 58,361)( 59,362)( 60,363)( 61,367)( 62,368)( 63,369)
( 64,373)( 65,374)( 66,375)( 67,370)( 68,371)( 69,372)( 70,376)( 71,377)
( 72,378)( 73,357)( 74,355)( 75,356)( 76,354)( 77,352)( 78,353)( 79,360)
( 80,358)( 81,359)( 82,244)( 83,245)( 84,246)( 85,250)( 86,251)( 87,252)
( 88,247)( 89,248)( 90,249)( 91,253)( 92,254)( 93,255)( 94,259)( 95,260)
( 96,261)( 97,256)( 98,257)( 99,258)(100,262)(101,263)(102,264)(103,268)
(104,269)(105,270)(106,265)(107,266)(108,267)(109,320)(110,321)(111,319)
(112,317)(113,318)(114,316)(115,323)(116,324)(117,322)(118,301)(119,302)
(120,303)(121,298)(122,299)(123,300)(124,304)(125,305)(126,306)(127,310)
(128,311)(129,312)(130,307)(131,308)(132,309)(133,313)(134,314)(135,315)
(136,283)(137,284)(138,285)(139,280)(140,281)(141,282)(142,286)(143,287)
(144,288)(145,292)(146,293)(147,294)(148,289)(149,290)(150,291)(151,295)
(152,296)(153,297)(154,276)(155,274)(156,275)(157,273)(158,271)(159,272)
(160,279)(161,277)(162,278)(163,409)(164,410)(165,411)(166,406)(167,407)
(168,408)(169,412)(170,413)(171,414)(172,418)(173,419)(174,420)(175,415)
(176,416)(177,417)(178,421)(179,422)(180,423)(181,427)(182,428)(183,429)
(184,424)(185,425)(186,426)(187,430)(188,431)(189,432)(190,486)(191,484)
(192,485)(193,483)(194,481)(195,482)(196,480)(197,478)(198,479)(199,467)
(200,468)(201,466)(202,464)(203,465)(204,463)(205,461)(206,462)(207,460)
(208,476)(209,477)(210,475)(211,473)(212,474)(213,472)(214,470)(215,471)
(216,469)(217,450)(218,448)(219,449)(220,447)(221,445)(222,446)(223,444)
(224,442)(225,443)(226,459)(227,457)(228,458)(229,456)(230,454)(231,455)
(232,453)(233,451)(234,452)(235,440)(236,441)(237,439)(238,437)(239,438)
(240,436)(241,434)(242,435)(243,433);
poly := sub<Sym(486)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s1*s2 >; 
 
References : None.
to this polytope