Questions?
See the FAQ
or other info.

# Polytope of Type {2,6,18}

Atlas Canonical Name : {2,6,18}*1944e
if this polytope has a name.
Group : SmallGroup(1944,956)
Rank : 4
Schlafli Type : {2,6,18}
Number of vertices, edges, etc : 2, 27, 243, 81
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,18}*648c
9-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 6,10)( 7, 9)( 8,11)(12,21)(13,23)(14,22)(15,29)(16,28)(17,27)
(18,24)(19,26)(20,25);;
s2 := ( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20);;
s3 := ( 4, 5)( 6,10)( 7, 9)( 8,11)(12,15)(13,17)(14,16)(18,19)(21,29)(22,28)
(23,27)(24,26);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s1*s2*s3*s1*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 4, 5)( 6,10)( 7, 9)( 8,11)(12,21)(13,23)(14,22)(15,29)(16,28)
(17,27)(18,24)(19,26)(20,25);
s2 := Sym(29)!( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(10,19)(11,20);
s3 := Sym(29)!( 4, 5)( 6,10)( 7, 9)( 8,11)(12,15)(13,17)(14,16)(18,19)(21,29)
(22,28)(23,27)(24,26);
poly := sub<Sym(29)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s1*s2*s3*s1*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope