Questions?
See the FAQ
or other info.

Polytope of Type {3,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2}*1944
if this polytope has a name.
Group : SmallGroup(1944,956)
Rank : 4
Schlafli Type : {3,6,2}
Number of vertices, edges, etc : 81, 243, 162, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,2}*648
   9-fold quotients : {3,6,2}*216
   27-fold quotients : {3,6,2}*72
   81-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (10,19)(11,20)(12,21)(13,24)(14,22)(15,23)(16,26)(17,27)(18,25);;
s1 := ( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,12)( 8,10)( 9,11);;
s2 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,19)(11,21)(12,20)(13,27)(14,26)(15,25)
(16,22)(17,24)(18,23);;
s3 := (28,29);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!(10,19)(11,20)(12,21)(13,24)(14,22)(15,23)(16,26)(17,27)(18,25);
s1 := Sym(29)!( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,12)( 8,10)( 9,11);
s2 := Sym(29)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,19)(11,21)(12,20)(13,27)(14,26)
(15,25)(16,22)(17,24)(18,23);
s3 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope