Questions?
See the FAQ
or other info.

Polytope of Type {2,490}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,490}*1960
if this polytope has a name.
Group : SmallGroup(1960,39)
Rank : 3
Schlafli Type : {2,490}
Number of vertices, edges, etc : 2, 490, 490
Order of s0s1s2 : 490
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,245}*980
   5-fold quotients : {2,98}*392
   7-fold quotients : {2,70}*280
   10-fold quotients : {2,49}*196
   14-fold quotients : {2,35}*140
   35-fold quotients : {2,14}*56
   49-fold quotients : {2,10}*40
   70-fold quotients : {2,7}*28
   98-fold quotients : {2,5}*20
   245-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  9)(  5,  8)(  6,  7)( 10, 51)( 11, 50)( 12, 49)( 13, 48)( 14, 47)
( 15, 46)( 16, 45)( 17, 44)( 18, 43)( 19, 42)( 20, 41)( 21, 40)( 22, 39)
( 23, 38)( 24, 37)( 25, 36)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)
( 52,199)( 53,205)( 54,204)( 55,203)( 56,202)( 57,201)( 58,200)( 59,247)
( 60,246)( 61,245)( 62,244)( 63,243)( 64,242)( 65,241)( 66,240)( 67,239)
( 68,238)( 69,237)( 70,236)( 71,235)( 72,234)( 73,233)( 74,232)( 75,231)
( 76,230)( 77,229)( 78,228)( 79,227)( 80,226)( 81,225)( 82,224)( 83,223)
( 84,222)( 85,221)( 86,220)( 87,219)( 88,218)( 89,217)( 90,216)( 91,215)
( 92,214)( 93,213)( 94,212)( 95,211)( 96,210)( 97,209)( 98,208)( 99,207)
(100,206)(101,150)(102,156)(103,155)(104,154)(105,153)(106,152)(107,151)
(108,198)(109,197)(110,196)(111,195)(112,194)(113,193)(114,192)(115,191)
(116,190)(117,189)(118,188)(119,187)(120,186)(121,185)(122,184)(123,183)
(124,182)(125,181)(126,180)(127,179)(128,178)(129,177)(130,176)(131,175)
(132,174)(133,173)(134,172)(135,171)(136,170)(137,169)(138,168)(139,167)
(140,166)(141,165)(142,164)(143,163)(144,162)(145,161)(146,160)(147,159)
(148,158)(149,157)(249,254)(250,253)(251,252)(255,296)(256,295)(257,294)
(258,293)(259,292)(260,291)(261,290)(262,289)(263,288)(264,287)(265,286)
(266,285)(267,284)(268,283)(269,282)(270,281)(271,280)(272,279)(273,278)
(274,277)(275,276)(297,444)(298,450)(299,449)(300,448)(301,447)(302,446)
(303,445)(304,492)(305,491)(306,490)(307,489)(308,488)(309,487)(310,486)
(311,485)(312,484)(313,483)(314,482)(315,481)(316,480)(317,479)(318,478)
(319,477)(320,476)(321,475)(322,474)(323,473)(324,472)(325,471)(326,470)
(327,469)(328,468)(329,467)(330,466)(331,465)(332,464)(333,463)(334,462)
(335,461)(336,460)(337,459)(338,458)(339,457)(340,456)(341,455)(342,454)
(343,453)(344,452)(345,451)(346,395)(347,401)(348,400)(349,399)(350,398)
(351,397)(352,396)(353,443)(354,442)(355,441)(356,440)(357,439)(358,438)
(359,437)(360,436)(361,435)(362,434)(363,433)(364,432)(365,431)(366,430)
(367,429)(368,428)(369,427)(370,426)(371,425)(372,424)(373,423)(374,422)
(375,421)(376,420)(377,419)(378,418)(379,417)(380,416)(381,415)(382,414)
(383,413)(384,412)(385,411)(386,410)(387,409)(388,408)(389,407)(390,406)
(391,405)(392,404)(393,403)(394,402);;
s2 := (  3,304)(  4,310)(  5,309)(  6,308)(  7,307)(  8,306)(  9,305)( 10,297)
( 11,303)( 12,302)( 13,301)( 14,300)( 15,299)( 16,298)( 17,345)( 18,344)
( 19,343)( 20,342)( 21,341)( 22,340)( 23,339)( 24,338)( 25,337)( 26,336)
( 27,335)( 28,334)( 29,333)( 30,332)( 31,331)( 32,330)( 33,329)( 34,328)
( 35,327)( 36,326)( 37,325)( 38,324)( 39,323)( 40,322)( 41,321)( 42,320)
( 43,319)( 44,318)( 45,317)( 46,316)( 47,315)( 48,314)( 49,313)( 50,312)
( 51,311)( 52,255)( 53,261)( 54,260)( 55,259)( 56,258)( 57,257)( 58,256)
( 59,248)( 60,254)( 61,253)( 62,252)( 63,251)( 64,250)( 65,249)( 66,296)
( 67,295)( 68,294)( 69,293)( 70,292)( 71,291)( 72,290)( 73,289)( 74,288)
( 75,287)( 76,286)( 77,285)( 78,284)( 79,283)( 80,282)( 81,281)( 82,280)
( 83,279)( 84,278)( 85,277)( 86,276)( 87,275)( 88,274)( 89,273)( 90,272)
( 91,271)( 92,270)( 93,269)( 94,268)( 95,267)( 96,266)( 97,265)( 98,264)
( 99,263)(100,262)(101,451)(102,457)(103,456)(104,455)(105,454)(106,453)
(107,452)(108,444)(109,450)(110,449)(111,448)(112,447)(113,446)(114,445)
(115,492)(116,491)(117,490)(118,489)(119,488)(120,487)(121,486)(122,485)
(123,484)(124,483)(125,482)(126,481)(127,480)(128,479)(129,478)(130,477)
(131,476)(132,475)(133,474)(134,473)(135,472)(136,471)(137,470)(138,469)
(139,468)(140,467)(141,466)(142,465)(143,464)(144,463)(145,462)(146,461)
(147,460)(148,459)(149,458)(150,402)(151,408)(152,407)(153,406)(154,405)
(155,404)(156,403)(157,395)(158,401)(159,400)(160,399)(161,398)(162,397)
(163,396)(164,443)(165,442)(166,441)(167,440)(168,439)(169,438)(170,437)
(171,436)(172,435)(173,434)(174,433)(175,432)(176,431)(177,430)(178,429)
(179,428)(180,427)(181,426)(182,425)(183,424)(184,423)(185,422)(186,421)
(187,420)(188,419)(189,418)(190,417)(191,416)(192,415)(193,414)(194,413)
(195,412)(196,411)(197,410)(198,409)(199,353)(200,359)(201,358)(202,357)
(203,356)(204,355)(205,354)(206,346)(207,352)(208,351)(209,350)(210,349)
(211,348)(212,347)(213,394)(214,393)(215,392)(216,391)(217,390)(218,389)
(219,388)(220,387)(221,386)(222,385)(223,384)(224,383)(225,382)(226,381)
(227,380)(228,379)(229,378)(230,377)(231,376)(232,375)(233,374)(234,373)
(235,372)(236,371)(237,370)(238,369)(239,368)(240,367)(241,366)(242,365)
(243,364)(244,363)(245,362)(246,361)(247,360);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(492)!(1,2);
s1 := Sym(492)!(  4,  9)(  5,  8)(  6,  7)( 10, 51)( 11, 50)( 12, 49)( 13, 48)
( 14, 47)( 15, 46)( 16, 45)( 17, 44)( 18, 43)( 19, 42)( 20, 41)( 21, 40)
( 22, 39)( 23, 38)( 24, 37)( 25, 36)( 26, 35)( 27, 34)( 28, 33)( 29, 32)
( 30, 31)( 52,199)( 53,205)( 54,204)( 55,203)( 56,202)( 57,201)( 58,200)
( 59,247)( 60,246)( 61,245)( 62,244)( 63,243)( 64,242)( 65,241)( 66,240)
( 67,239)( 68,238)( 69,237)( 70,236)( 71,235)( 72,234)( 73,233)( 74,232)
( 75,231)( 76,230)( 77,229)( 78,228)( 79,227)( 80,226)( 81,225)( 82,224)
( 83,223)( 84,222)( 85,221)( 86,220)( 87,219)( 88,218)( 89,217)( 90,216)
( 91,215)( 92,214)( 93,213)( 94,212)( 95,211)( 96,210)( 97,209)( 98,208)
( 99,207)(100,206)(101,150)(102,156)(103,155)(104,154)(105,153)(106,152)
(107,151)(108,198)(109,197)(110,196)(111,195)(112,194)(113,193)(114,192)
(115,191)(116,190)(117,189)(118,188)(119,187)(120,186)(121,185)(122,184)
(123,183)(124,182)(125,181)(126,180)(127,179)(128,178)(129,177)(130,176)
(131,175)(132,174)(133,173)(134,172)(135,171)(136,170)(137,169)(138,168)
(139,167)(140,166)(141,165)(142,164)(143,163)(144,162)(145,161)(146,160)
(147,159)(148,158)(149,157)(249,254)(250,253)(251,252)(255,296)(256,295)
(257,294)(258,293)(259,292)(260,291)(261,290)(262,289)(263,288)(264,287)
(265,286)(266,285)(267,284)(268,283)(269,282)(270,281)(271,280)(272,279)
(273,278)(274,277)(275,276)(297,444)(298,450)(299,449)(300,448)(301,447)
(302,446)(303,445)(304,492)(305,491)(306,490)(307,489)(308,488)(309,487)
(310,486)(311,485)(312,484)(313,483)(314,482)(315,481)(316,480)(317,479)
(318,478)(319,477)(320,476)(321,475)(322,474)(323,473)(324,472)(325,471)
(326,470)(327,469)(328,468)(329,467)(330,466)(331,465)(332,464)(333,463)
(334,462)(335,461)(336,460)(337,459)(338,458)(339,457)(340,456)(341,455)
(342,454)(343,453)(344,452)(345,451)(346,395)(347,401)(348,400)(349,399)
(350,398)(351,397)(352,396)(353,443)(354,442)(355,441)(356,440)(357,439)
(358,438)(359,437)(360,436)(361,435)(362,434)(363,433)(364,432)(365,431)
(366,430)(367,429)(368,428)(369,427)(370,426)(371,425)(372,424)(373,423)
(374,422)(375,421)(376,420)(377,419)(378,418)(379,417)(380,416)(381,415)
(382,414)(383,413)(384,412)(385,411)(386,410)(387,409)(388,408)(389,407)
(390,406)(391,405)(392,404)(393,403)(394,402);
s2 := Sym(492)!(  3,304)(  4,310)(  5,309)(  6,308)(  7,307)(  8,306)(  9,305)
( 10,297)( 11,303)( 12,302)( 13,301)( 14,300)( 15,299)( 16,298)( 17,345)
( 18,344)( 19,343)( 20,342)( 21,341)( 22,340)( 23,339)( 24,338)( 25,337)
( 26,336)( 27,335)( 28,334)( 29,333)( 30,332)( 31,331)( 32,330)( 33,329)
( 34,328)( 35,327)( 36,326)( 37,325)( 38,324)( 39,323)( 40,322)( 41,321)
( 42,320)( 43,319)( 44,318)( 45,317)( 46,316)( 47,315)( 48,314)( 49,313)
( 50,312)( 51,311)( 52,255)( 53,261)( 54,260)( 55,259)( 56,258)( 57,257)
( 58,256)( 59,248)( 60,254)( 61,253)( 62,252)( 63,251)( 64,250)( 65,249)
( 66,296)( 67,295)( 68,294)( 69,293)( 70,292)( 71,291)( 72,290)( 73,289)
( 74,288)( 75,287)( 76,286)( 77,285)( 78,284)( 79,283)( 80,282)( 81,281)
( 82,280)( 83,279)( 84,278)( 85,277)( 86,276)( 87,275)( 88,274)( 89,273)
( 90,272)( 91,271)( 92,270)( 93,269)( 94,268)( 95,267)( 96,266)( 97,265)
( 98,264)( 99,263)(100,262)(101,451)(102,457)(103,456)(104,455)(105,454)
(106,453)(107,452)(108,444)(109,450)(110,449)(111,448)(112,447)(113,446)
(114,445)(115,492)(116,491)(117,490)(118,489)(119,488)(120,487)(121,486)
(122,485)(123,484)(124,483)(125,482)(126,481)(127,480)(128,479)(129,478)
(130,477)(131,476)(132,475)(133,474)(134,473)(135,472)(136,471)(137,470)
(138,469)(139,468)(140,467)(141,466)(142,465)(143,464)(144,463)(145,462)
(146,461)(147,460)(148,459)(149,458)(150,402)(151,408)(152,407)(153,406)
(154,405)(155,404)(156,403)(157,395)(158,401)(159,400)(160,399)(161,398)
(162,397)(163,396)(164,443)(165,442)(166,441)(167,440)(168,439)(169,438)
(170,437)(171,436)(172,435)(173,434)(174,433)(175,432)(176,431)(177,430)
(178,429)(179,428)(180,427)(181,426)(182,425)(183,424)(184,423)(185,422)
(186,421)(187,420)(188,419)(189,418)(190,417)(191,416)(192,415)(193,414)
(194,413)(195,412)(196,411)(197,410)(198,409)(199,353)(200,359)(201,358)
(202,357)(203,356)(204,355)(205,354)(206,346)(207,352)(208,351)(209,350)
(210,349)(211,348)(212,347)(213,394)(214,393)(215,392)(216,391)(217,390)
(218,389)(219,388)(220,387)(221,386)(222,385)(223,384)(224,383)(225,382)
(226,381)(227,380)(228,379)(229,378)(230,377)(231,376)(232,375)(233,374)
(234,373)(235,372)(236,371)(237,370)(238,369)(239,368)(240,367)(241,366)
(242,365)(243,364)(244,363)(245,362)(246,361)(247,360);
poly := sub<Sym(492)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope