Questions?
See the FAQ
or other info.

Polytope of Type {4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,10}*2000b
if this polytope has a name.
Group : SmallGroup(2000,919)
Rank : 3
Schlafli Type : {4,10}
Number of vertices, edges, etc : 100, 500, 250
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {4,10}*400
   10-fold quotients : {4,10}*200
   25-fold quotients : {4,10}*80
   50-fold quotients : {2,10}*40
   100-fold quotients : {2,5}*20
   125-fold quotients : {4,2}*16
   250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 26)(  7, 27)(  8, 28)(  9, 29)( 10, 30)( 11, 51)( 12, 52)( 13, 53)
( 14, 54)( 15, 55)( 16, 76)( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21,101)
( 22,102)( 23,103)( 24,104)( 25,105)( 36, 56)( 37, 57)( 38, 58)( 39, 59)
( 40, 60)( 41, 81)( 42, 82)( 43, 83)( 44, 84)( 45, 85)( 46,106)( 47,107)
( 48,108)( 49,109)( 50,110)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)
( 71,111)( 72,112)( 73,113)( 74,114)( 75,115)( 96,116)( 97,117)( 98,118)
( 99,119)(100,120);;
s1 := (  2,  5)(  3,  4)(  6, 76)(  7, 80)(  8, 79)(  9, 78)( 10, 77)( 11, 26)
( 12, 30)( 13, 29)( 14, 28)( 15, 27)( 16,101)( 17,105)( 18,104)( 19,103)
( 20,102)( 21, 51)( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 31, 86)( 32, 90)
( 33, 89)( 34, 88)( 35, 87)( 37, 40)( 38, 39)( 41,111)( 42,115)( 43,114)
( 44,113)( 45,112)( 46, 61)( 47, 65)( 48, 64)( 49, 63)( 50, 62)( 56, 96)
( 57,100)( 58, 99)( 59, 98)( 60, 97)( 66,121)( 67,125)( 68,124)( 69,123)
( 70,122)( 72, 75)( 73, 74)( 82, 85)( 83, 84)( 91,106)( 92,110)( 93,109)
( 94,108)( 95,107)(117,120)(118,119);;
s2 := (  1, 32)(  2, 31)(  3, 35)(  4, 34)(  5, 33)(  6, 27)(  7, 26)(  8, 30)
(  9, 29)( 10, 28)( 11, 47)( 12, 46)( 13, 50)( 14, 49)( 15, 48)( 16, 42)
( 17, 41)( 18, 45)( 19, 44)( 20, 43)( 21, 37)( 22, 36)( 23, 40)( 24, 39)
( 25, 38)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)( 56,102)( 57,101)
( 58,105)( 59,104)( 60,103)( 61,122)( 62,121)( 63,125)( 64,124)( 65,123)
( 66,117)( 67,116)( 68,120)( 69,119)( 70,118)( 71,112)( 72,111)( 73,115)
( 74,114)( 75,113)( 76, 82)( 77, 81)( 78, 85)( 79, 84)( 80, 83)( 86, 97)
( 87, 96)( 88,100)( 89, 99)( 90, 98)( 91, 92)( 93, 95);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(125)!(  6, 26)(  7, 27)(  8, 28)(  9, 29)( 10, 30)( 11, 51)( 12, 52)
( 13, 53)( 14, 54)( 15, 55)( 16, 76)( 17, 77)( 18, 78)( 19, 79)( 20, 80)
( 21,101)( 22,102)( 23,103)( 24,104)( 25,105)( 36, 56)( 37, 57)( 38, 58)
( 39, 59)( 40, 60)( 41, 81)( 42, 82)( 43, 83)( 44, 84)( 45, 85)( 46,106)
( 47,107)( 48,108)( 49,109)( 50,110)( 66, 86)( 67, 87)( 68, 88)( 69, 89)
( 70, 90)( 71,111)( 72,112)( 73,113)( 74,114)( 75,115)( 96,116)( 97,117)
( 98,118)( 99,119)(100,120);
s1 := Sym(125)!(  2,  5)(  3,  4)(  6, 76)(  7, 80)(  8, 79)(  9, 78)( 10, 77)
( 11, 26)( 12, 30)( 13, 29)( 14, 28)( 15, 27)( 16,101)( 17,105)( 18,104)
( 19,103)( 20,102)( 21, 51)( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 31, 86)
( 32, 90)( 33, 89)( 34, 88)( 35, 87)( 37, 40)( 38, 39)( 41,111)( 42,115)
( 43,114)( 44,113)( 45,112)( 46, 61)( 47, 65)( 48, 64)( 49, 63)( 50, 62)
( 56, 96)( 57,100)( 58, 99)( 59, 98)( 60, 97)( 66,121)( 67,125)( 68,124)
( 69,123)( 70,122)( 72, 75)( 73, 74)( 82, 85)( 83, 84)( 91,106)( 92,110)
( 93,109)( 94,108)( 95,107)(117,120)(118,119);
s2 := Sym(125)!(  1, 32)(  2, 31)(  3, 35)(  4, 34)(  5, 33)(  6, 27)(  7, 26)
(  8, 30)(  9, 29)( 10, 28)( 11, 47)( 12, 46)( 13, 50)( 14, 49)( 15, 48)
( 16, 42)( 17, 41)( 18, 45)( 19, 44)( 20, 43)( 21, 37)( 22, 36)( 23, 40)
( 24, 39)( 25, 38)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)( 56,102)
( 57,101)( 58,105)( 59,104)( 60,103)( 61,122)( 62,121)( 63,125)( 64,124)
( 65,123)( 66,117)( 67,116)( 68,120)( 69,119)( 70,118)( 71,112)( 72,111)
( 73,115)( 74,114)( 75,113)( 76, 82)( 77, 81)( 78, 85)( 79, 84)( 80, 83)
( 86, 97)( 87, 96)( 88,100)( 89, 99)( 90, 98)( 91, 92)( 93, 95);
poly := sub<Sym(125)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope