Questions?
See the FAQ
or other info.

Polytope of Type {2,51}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,51}*204
if this polytope has a name.
Group : SmallGroup(204,11)
Rank : 3
Schlafli Type : {2,51}
Number of vertices, edges, etc : 2, 51, 51
Order of s0s1s2 : 102
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,51,2} of size 408
   {2,51,4} of size 816
   {2,51,6} of size 1224
   {2,51,6} of size 1632
   {2,51,4} of size 1632
Vertex Figure Of :
   {2,2,51} of size 408
   {3,2,51} of size 612
   {4,2,51} of size 816
   {5,2,51} of size 1020
   {6,2,51} of size 1224
   {7,2,51} of size 1428
   {8,2,51} of size 1632
   {9,2,51} of size 1836
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,17}*68
   17-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,102}*408
   3-fold covers : {2,153}*612, {6,51}*612
   4-fold covers : {2,204}*816, {4,102}*816a, {4,51}*816
   5-fold covers : {2,255}*1020
   6-fold covers : {2,306}*1224, {6,102}*1224b, {6,102}*1224c
   7-fold covers : {2,357}*1428
   8-fold covers : {4,204}*1632a, {2,408}*1632, {8,102}*1632, {8,51}*1632, {4,102}*1632
   9-fold covers : {2,459}*1836, {6,153}*1836, {6,51}*1836
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)
(46,47)(48,49)(50,51)(52,53);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)
(45,46)(47,48)(49,50)(51,52);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(53)!(1,2);
s1 := Sym(53)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)
(44,45)(46,47)(48,49)(50,51)(52,53);
s2 := Sym(53)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)
(43,44)(45,46)(47,48)(49,50)(51,52);
poly := sub<Sym(53)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope