Questions?
See the FAQ
or other info.

Polytope of Type {4,2,13}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,13}*208
if this polytope has a name.
Group : SmallGroup(208,39)
Rank : 4
Schlafli Type : {4,2,13}
Number of vertices, edges, etc : 4, 4, 13, 13
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,2,13,2} of size 416
Vertex Figure Of :
   {2,4,2,13} of size 416
   {3,4,2,13} of size 624
   {4,4,2,13} of size 832
   {6,4,2,13} of size 1248
   {3,4,2,13} of size 1248
   {6,4,2,13} of size 1248
   {6,4,2,13} of size 1248
   {8,4,2,13} of size 1664
   {8,4,2,13} of size 1664
   {4,4,2,13} of size 1664
   {9,4,2,13} of size 1872
   {4,4,2,13} of size 1872
   {6,4,2,13} of size 1872
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,13}*104
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,2,13}*416, {4,2,26}*416
   3-fold covers : {12,2,13}*624, {4,2,39}*624
   4-fold covers : {16,2,13}*832, {4,2,52}*832, {4,4,26}*832, {8,2,26}*832
   5-fold covers : {20,2,13}*1040, {4,2,65}*1040
   6-fold covers : {24,2,13}*1248, {8,2,39}*1248, {12,2,26}*1248, {4,6,26}*1248a, {4,2,78}*1248
   7-fold covers : {28,2,13}*1456, {4,2,91}*1456
   8-fold covers : {32,2,13}*1664, {4,4,52}*1664, {4,8,26}*1664a, {8,4,26}*1664a, {4,8,26}*1664b, {8,4,26}*1664b, {4,4,26}*1664, {8,2,52}*1664, {4,2,104}*1664, {16,2,26}*1664
   9-fold covers : {36,2,13}*1872, {4,2,117}*1872, {12,2,39}*1872, {4,6,39}*1872
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17);;
s3 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(2,3);
s1 := Sym(17)!(1,2)(3,4);
s2 := Sym(17)!( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17);
s3 := Sym(17)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16);
poly := sub<Sym(17)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope