Questions?
See the FAQ
or other info.

Polytope of Type {3,2,2,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,9}*216
if this polytope has a name.
Group : SmallGroup(216,101)
Rank : 5
Schlafli Type : {3,2,2,9}
Number of vertices, edges, etc : 3, 3, 2, 9, 9
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,2,9,2} of size 432
   {3,2,2,9,4} of size 864
   {3,2,2,9,6} of size 1296
   {3,2,2,9,4} of size 1728
Vertex Figure Of :
   {2,3,2,2,9} of size 432
   {3,3,2,2,9} of size 864
   {4,3,2,2,9} of size 864
   {6,3,2,2,9} of size 1296
   {4,3,2,2,9} of size 1728
   {6,3,2,2,9} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,2,18}*432, {6,2,2,9}*432
   3-fold covers : {9,2,2,9}*648, {3,2,2,27}*648, {3,2,6,9}*648, {3,6,2,9}*648
   4-fold covers : {3,2,2,36}*864, {12,2,2,9}*864, {3,2,4,18}*864a, {6,4,2,9}*864a, {3,4,2,9}*864, {3,2,4,9}*864, {6,2,2,18}*864
   5-fold covers : {3,2,2,45}*1080, {15,2,2,9}*1080
   6-fold covers : {9,2,2,18}*1296, {18,2,2,9}*1296, {3,2,2,54}*1296, {6,2,2,27}*1296, {3,2,6,18}*1296a, {3,2,6,18}*1296b, {3,6,2,18}*1296, {6,2,6,9}*1296, {6,6,2,9}*1296a, {6,6,2,9}*1296c
   7-fold covers : {3,2,2,63}*1512, {21,2,2,9}*1512
   8-fold covers : {12,4,2,9}*1728a, {3,2,4,36}*1728a, {3,2,2,72}*1728, {24,2,2,9}*1728, {3,2,8,18}*1728, {6,8,2,9}*1728, {3,8,2,9}*1728, {3,2,8,9}*1728, {12,2,2,18}*1728, {6,2,2,36}*1728, {6,2,4,18}*1728a, {6,4,2,18}*1728a, {3,4,2,18}*1728, {6,4,2,9}*1728, {3,2,4,18}*1728, {6,2,4,9}*1728
   9-fold covers : {9,2,2,27}*1944, {27,2,2,9}*1944, {3,2,2,81}*1944, {3,2,18,9}*1944, {9,2,6,9}*1944, {9,6,2,9}*1944, {3,2,6,9}*1944a, {3,6,2,9}*1944, {3,2,6,27}*1944, {3,6,2,27}*1944, {3,6,6,9}*1944
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7, 8)( 9,10)(11,12)(13,14);;
s4 := ( 6, 7)( 8, 9)(10,11)(12,13);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(2,3);
s1 := Sym(14)!(1,2);
s2 := Sym(14)!(4,5);
s3 := Sym(14)!( 7, 8)( 9,10)(11,12)(13,14);
s4 := Sym(14)!( 6, 7)( 8, 9)(10,11)(12,13);
poly := sub<Sym(14)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope