Questions?
See the FAQ
or other info.

Polytope of Type {3,2,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,18}*216
if this polytope has a name.
Group : SmallGroup(216,101)
Rank : 4
Schlafli Type : {3,2,18}
Number of vertices, edges, etc : 3, 3, 18, 18
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,18,2} of size 432
   {3,2,18,4} of size 864
   {3,2,18,4} of size 864
   {3,2,18,4} of size 864
   {3,2,18,6} of size 1296
   {3,2,18,6} of size 1296
   {3,2,18,8} of size 1728
   {3,2,18,4} of size 1728
   {3,2,18,9} of size 1944
   {3,2,18,6} of size 1944
   {3,2,18,6} of size 1944
   {3,2,18,3} of size 1944
   {3,2,18,6} of size 1944
Vertex Figure Of :
   {2,3,2,18} of size 432
   {3,3,2,18} of size 864
   {4,3,2,18} of size 864
   {6,3,2,18} of size 1296
   {4,3,2,18} of size 1728
   {6,3,2,18} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,9}*108
   3-fold quotients : {3,2,6}*72
   6-fold quotients : {3,2,3}*36
   9-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,36}*432, {6,2,18}*432
   3-fold covers : {9,2,18}*648, {3,6,18}*648a, {3,2,54}*648, {3,6,18}*648b
   4-fold covers : {3,2,72}*864, {6,2,36}*864, {12,2,18}*864, {6,4,18}*864, {3,4,18}*864
   5-fold covers : {3,2,90}*1080, {15,2,18}*1080
   6-fold covers : {9,2,36}*1296, {3,6,36}*1296a, {3,2,108}*1296, {18,2,18}*1296, {6,6,18}*1296a, {6,2,54}*1296, {3,6,36}*1296b, {6,6,18}*1296b, {6,6,18}*1296c, {6,6,18}*1296e
   7-fold covers : {3,2,126}*1512, {21,2,18}*1512
   8-fold covers : {3,2,144}*1728, {12,2,36}*1728, {12,4,18}*1728, {6,4,36}*1728, {6,2,72}*1728, {24,2,18}*1728, {6,8,18}*1728, {3,4,36}*1728, {3,8,18}*1728, {6,4,18}*1728a, {6,4,18}*1728b
   9-fold covers : {9,6,18}*1944a, {9,2,54}*1944, {27,2,18}*1944, {3,6,54}*1944a, {3,6,18}*1944a, {3,6,18}*1944b, {3,2,162}*1944, {9,6,18}*1944b, {3,6,18}*1944c, {3,6,18}*1944d, {3,6,18}*1944e, {3,6,54}*1944b
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
s3 := ( 4, 8)( 5, 6)( 7,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,21);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(21)!(2,3);
s1 := Sym(21)!(1,2);
s2 := Sym(21)!( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);
s3 := Sym(21)!( 4, 8)( 5, 6)( 7,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,21);
poly := sub<Sym(21)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope