Questions?
See the FAQ
or other info.

Polytopes for Group SmallGroup(216,101)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes :
  1. {6,18}*216a
  2. {6,18}*216b
  3. {18,6}*216a
  4. {18,6}*216b


Degenerate Polytopes :
  1. {2,3,2,9}*216
  2. {2,6,9}*216
  3. {2,9,2,3}*216
  4. {2,9,6}*216
  5. {3,2,2,9}*216
  6. {3,2,9,2}*216
  7. {3,2,18}*216
  8. {6,2,9}*216
  9. {6,9,2}*216
  10. {9,2,2,3}*216
  11. {9,2,3,2}*216
  12. {9,2,6}*216
  13. {9,6,2}*216
  14. {18,2,3}*216



Other Groups of Order 216 :
  1. SmallGroup(216,6) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(216,21) 2 nondegenerate polytopes and 0 degenerate polytopes.
  3. SmallGroup(216,23) 0 nondegenerate polytopes and 5 degenerate polytopes.
  4. SmallGroup(216,87) 8 nondegenerate polytopes and 0 degenerate polytopes.
  5. SmallGroup(216,101) 4 nondegenerate polytopes and 14 degenerate polytopes (this group).
  6. SmallGroup(216,102) 5 nondegenerate polytopes and 8 degenerate polytopes.
  7. SmallGroup(216,159) 2 nondegenerate polytopes and 0 degenerate polytopes.
  8. SmallGroup(216,162) 4 nondegenerate polytopes and 5 degenerate polytopes.