Questions?
See the FAQ
or other info.

Polytope of Type {2,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*216
if this polytope has a name.
Group : SmallGroup(216,102)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 9, 27, 9
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,6,2} of size 432
   {2,6,6,4} of size 864
   {2,6,6,6} of size 1296
   {2,6,6,4} of size 1728
Vertex Figure Of :
   {2,2,6,6} of size 432
   {3,2,6,6} of size 648
   {4,2,6,6} of size 864
   {5,2,6,6} of size 1080
   {6,2,6,6} of size 1296
   {7,2,6,6} of size 1512
   {8,2,6,6} of size 1728
   {9,2,6,6} of size 1944
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,6,6}*432b
   3-fold covers : {2,6,18}*648a, {2,18,6}*648a, {2,6,6}*648a, {2,6,6}*648b, {2,6,18}*648b, {2,18,6}*648b, {2,6,18}*648c, {2,18,6}*648c, {6,6,6}*648a
   4-fold covers : {2,6,12}*864b, {2,12,6}*864b, {4,6,6}*864b, {2,6,12}*864d, {4,6,6}*864g, {2,12,6}*864d
   5-fold covers : {2,6,30}*1080, {2,30,6}*1080
   6-fold covers : {2,6,18}*1296b, {2,18,6}*1296b, {2,6,6}*1296a, {2,6,6}*1296b, {2,6,18}*1296f, {2,18,6}*1296f, {2,6,18}*1296g, {2,18,6}*1296g, {6,6,6}*1296g, {6,6,6}*1296h, {2,6,6}*1296g
   7-fold covers : {2,6,42}*1512, {2,42,6}*1512
   8-fold covers : {4,6,12}*1728a, {4,12,6}*1728b, {2,6,24}*1728b, {2,24,6}*1728b, {8,6,6}*1728b, {2,12,12}*1728c, {8,6,6}*1728d, {4,6,6}*1728b, {2,6,12}*1728b, {2,12,6}*1728b
   9-fold covers : {2,18,18}*1944a, {2,6,6}*1944, {2,18,18}*1944b, {2,6,18}*1944a, {2,18,6}*1944a, {2,6,18}*1944b, {2,18,6}*1944b, {2,18,18}*1944c, {2,18,18}*1944d, {2,18,18}*1944e, {2,6,54}*1944a, {2,54,6}*1944a, {2,6,18}*1944c, {2,18,6}*1944c, {2,18,18}*1944f, {2,18,18}*1944g, {2,18,18}*1944h, {2,18,18}*1944i, {2,6,18}*1944d, {2,18,6}*1944d, {2,6,54}*1944b, {2,54,6}*1944b, {2,6,54}*1944c, {2,54,6}*1944c, {2,6,18}*1944e, {2,18,6}*1944e, {6,6,18}*1944a, {6,18,6}*1944a, {6,6,6}*1944b, {6,6,6}*1944c, {6,6,6}*1944e, {6,6,6}*1944f, {6,6,18}*1944b, {6,18,6}*1944c, {6,6,18}*1944c, {6,18,6}*1944e
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 7)( 8, 9)(10,11);;
s2 := (4,8)(5,6)(7,9);;
s3 := ( 3, 4)( 6,11)( 7,10)( 8, 9);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s1*s2*s3*s1*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(1,2);
s1 := Sym(11)!( 6, 7)( 8, 9)(10,11);
s2 := Sym(11)!(4,8)(5,6)(7,9);
s3 := Sym(11)!( 3, 4)( 6,11)( 7,10)( 8, 9);
poly := sub<Sym(11)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope