Questions?
See the FAQ
or other info.

Polytope of Type {3,6,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,3,2}*216
if this polytope has a name.
Group : SmallGroup(216,102)
Rank : 5
Schlafli Type : {3,6,3,2}
Number of vertices, edges, etc : 3, 9, 9, 3, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,6,3,2,2} of size 432
   {3,6,3,2,3} of size 648
   {3,6,3,2,4} of size 864
   {3,6,3,2,5} of size 1080
   {3,6,3,2,6} of size 1296
   {3,6,3,2,7} of size 1512
   {3,6,3,2,8} of size 1728
   {3,6,3,2,9} of size 1944
Vertex Figure Of :
   {2,3,6,3,2} of size 432
   {4,3,6,3,2} of size 864
   {6,3,6,3,2} of size 1296
   {4,3,6,3,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,6,6,2}*432a, {6,6,3,2}*432a
   3-fold covers : {3,6,9,2}*648, {9,6,3,2}*648, {3,6,3,2}*648a, {3,6,3,2}*648b, {3,6,3,6}*648
   4-fold covers : {3,6,12,2}*864a, {12,6,3,2}*864a, {3,6,6,4}*864a, {3,6,3,4}*864, {6,6,6,2}*864a
   5-fold covers : {3,6,15,2}*1080, {15,6,3,2}*1080
   6-fold covers : {3,6,18,2}*1296a, {6,6,9,2}*1296a, {9,6,6,2}*1296a, {18,6,3,2}*1296a, {3,6,6,2}*1296a, {3,6,6,2}*1296b, {6,6,3,2}*1296a, {6,6,3,2}*1296b, {3,6,6,6}*1296a, {3,6,6,6}*1296b, {6,6,3,6}*1296a, {3,6,6,2}*1296e, {6,6,3,2}*1296e
   7-fold covers : {3,6,21,2}*1512, {21,6,3,2}*1512
   8-fold covers : {3,6,12,4}*1728a, {3,6,24,2}*1728a, {24,6,3,2}*1728a, {3,6,6,8}*1728a, {3,6,3,8}*1728, {6,6,12,2}*1728a, {12,6,6,2}*1728a, {6,6,6,4}*1728a, {6,12,6,2}*1728a, {3,6,6,4}*1728a, {6,6,3,4}*1728a, {3,12,6,2}*1728a, {6,12,3,2}*1728a
   9-fold covers : {9,6,9,2}*1944, {3,6,3,2}*1944, {3,6,27,2}*1944, {27,6,3,2}*1944, {3,6,9,2}*1944a, {9,6,3,2}*1944a, {3,6,9,2}*1944b, {9,6,3,2}*1944b, {3,6,9,6}*1944, {9,6,3,6}*1944, {3,6,3,6}*1944a, {3,6,3,6}*1944b, {3,6,3,6}*1944c
Permutation Representation (GAP) :
s0 := (4,5)(6,7)(8,9);;
s1 := (2,4)(3,6)(8,9);;
s2 := (1,2)(4,9)(5,8)(6,7);;
s3 := (2,3)(4,6)(5,7)(8,9);;
s4 := (10,11);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(4,5)(6,7)(8,9);
s1 := Sym(11)!(2,4)(3,6)(8,9);
s2 := Sym(11)!(1,2)(4,9)(5,8)(6,7);
s3 := Sym(11)!(2,3)(4,6)(5,7)(8,9);
s4 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >; 
 

to this polytope