Questions?
See the FAQ
or other info.

# Polytope of Type {4,27}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,27}*216
if this polytope has a name.
Group : SmallGroup(216,21)
Rank : 3
Schlafli Type : {4,27}
Number of vertices, edges, etc : 4, 54, 27
Order of s0s1s2 : 27
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,27,2} of size 432
{4,27,4} of size 864
{4,27,6} of size 1296
{4,27,4} of size 1728
Vertex Figure Of :
{2,4,27} of size 432
{4,4,27} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,9}*72
9-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,27}*432, {4,54}*432b, {4,54}*432c
3-fold covers : {4,81}*648
4-fold covers : {4,108}*864b, {4,108}*864c, {8,27}*864, {4,54}*864
5-fold covers : {4,135}*1080
6-fold covers : {4,81}*1296, {4,162}*1296b, {4,162}*1296c, {12,27}*1296, {12,54}*1296c
7-fold covers : {4,189}*1512
8-fold covers : {4,54}*1728a, {8,27}*1728, {8,54}*1728a, {4,216}*1728c, {4,216}*1728d, {4,108}*1728b, {4,54}*1728b, {4,108}*1728c, {8,54}*1728b, {8,54}*1728c
9-fold covers : {4,243}*1944
Permutation Representation (GAP) :
```s0 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108);;
s1 := (  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 29)( 14, 31)( 15, 30)
( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)( 23, 34)
( 24, 36)( 37, 85)( 38, 87)( 39, 86)( 40, 88)( 41, 93)( 42, 95)( 43, 94)
( 44, 96)( 45, 89)( 46, 91)( 47, 90)( 48, 92)( 49, 73)( 50, 75)( 51, 74)
( 52, 76)( 53, 81)( 54, 83)( 55, 82)( 56, 84)( 57, 77)( 58, 79)( 59, 78)
( 60, 80)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)( 67, 98)
( 68,100)( 69,105)( 70,107)( 71,106)( 72,108);;
s2 := (  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)(  8, 47)
(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)( 16, 67)
( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)( 24, 71)
( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)( 32, 51)
( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 73, 85)( 74, 86)( 75, 88)( 76, 87)
( 77, 93)( 78, 94)( 79, 96)( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91)
( 97,101)( 98,102)( 99,104)(100,103)(107,108);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(108)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108);
s1 := Sym(108)!(  2,  3)(  5,  9)(  6, 11)(  7, 10)(  8, 12)( 13, 29)( 14, 31)
( 15, 30)( 16, 32)( 17, 25)( 18, 27)( 19, 26)( 20, 28)( 21, 33)( 22, 35)
( 23, 34)( 24, 36)( 37, 85)( 38, 87)( 39, 86)( 40, 88)( 41, 93)( 42, 95)
( 43, 94)( 44, 96)( 45, 89)( 46, 91)( 47, 90)( 48, 92)( 49, 73)( 50, 75)
( 51, 74)( 52, 76)( 53, 81)( 54, 83)( 55, 82)( 56, 84)( 57, 77)( 58, 79)
( 59, 78)( 60, 80)( 61,101)( 62,103)( 63,102)( 64,104)( 65, 97)( 66, 99)
( 67, 98)( 68,100)( 69,105)( 70,107)( 71,106)( 72,108);
s2 := Sym(108)!(  1, 37)(  2, 38)(  3, 40)(  4, 39)(  5, 45)(  6, 46)(  7, 48)
(  8, 47)(  9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 65)( 14, 66)( 15, 68)
( 16, 67)( 17, 61)( 18, 62)( 19, 64)( 20, 63)( 21, 69)( 22, 70)( 23, 72)
( 24, 71)( 25, 53)( 26, 54)( 27, 56)( 28, 55)( 29, 49)( 30, 50)( 31, 52)
( 32, 51)( 33, 57)( 34, 58)( 35, 60)( 36, 59)( 73, 85)( 74, 86)( 75, 88)
( 76, 87)( 77, 93)( 78, 94)( 79, 96)( 80, 95)( 81, 89)( 82, 90)( 83, 92)
( 84, 91)( 97,101)( 98,102)( 99,104)(100,103)(107,108);
poly := sub<Sym(108)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope