Questions?
See the FAQ
or other info.

Polytope of Type {6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12}*216b
if this polytope has a name.
Group : SmallGroup(216,87)
Rank : 3
Schlafli Type : {6,12}
Number of vertices, edges, etc : 9, 54, 18
Order of s0s1s2 : 4
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,12,2} of size 432
   {6,12,4} of size 864
   {6,12,6} of size 1296
   {6,12,8} of size 1728
Vertex Figure Of :
   {2,6,12} of size 432
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,12}*432f
   3-fold covers : {6,12}*648
   4-fold covers : {6,24}*864e, {12,12}*864f
   5-fold covers : {6,60}*1080b
   6-fold covers : {6,12}*1296l, {6,12}*1296n, {6,12}*1296o
   7-fold covers : {6,84}*1512b
   8-fold covers : {6,48}*1728e, {12,12}*1728f, {12,24}*1728g, {24,12}*1728i, {24,12}*1728k, {12,24}*1728m
   9-fold covers : {18,12}*1944b, {6,12}*1944b, {18,12}*1944c, {18,12}*1944f, {6,36}*1944
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18);;
s1 := ( 2, 3)( 4, 5)( 7, 9)(10,16)(11,18)(12,17)(14,15);;
s2 := ( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18);
s1 := Sym(18)!( 2, 3)( 4, 5)( 7, 9)(10,16)(11,18)(12,17)(14,15);
s2 := Sym(18)!( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18);
poly := sub<Sym(18)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s2 >; 
 
References : None.
to this polytope