Questions?
See the FAQ
or other info.

# Polytope of Type {3,6,3}

Atlas Canonical Name : {3,6,3}*240
Also Known As : 7T4(2,0)(2,0), {{3,6}4,{6,3}4}. if this polytope has another name.
Group : SmallGroup(240,189)
Rank : 4
Schlafli Type : {3,6,3}
Number of vertices, edges, etc : 5, 20, 20, 5
Order of s0s1s2s3 : 5
Order of s0s1s2s3s2s1 : 6
Special Properties :
Universal
Locally Toroidal
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,6,3,2} of size 480
{3,6,3,3} of size 1440
Vertex Figure Of :
{2,3,6,3} of size 480
{3,3,6,3} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,3,3}*120
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,12,3}*480, {3,6,6}*480, {6,6,3}*480
3-fold covers : {3,6,3}*720a, {3,6,3}*720b
4-fold covers : {3,12,6}*960, {6,12,3}*960, {3,6,12}*960, {12,6,3}*960, {6,6,6}*960
5-fold covers : {3,6,15}*1200, {15,6,3}*1200
6-fold covers : {3,12,3}*1440a, {3,12,3}*1440b, {3,6,6}*1440a, {3,6,6}*1440b, {3,6,6}*1440c, {6,6,3}*1440a, {6,6,3}*1440b, {6,6,3}*1440c
7-fold covers : {3,6,21}*1680, {21,6,3}*1680
8-fold covers : {3,6,24}*1920, {24,6,3}*1920, {6,6,12}*1920, {6,12,6}*1920a, {12,6,6}*1920, {3,12,12}*1920, {12,12,3}*1920, {6,12,6}*1920b
Permutation Representation (GAP) :
```s0 := (4,5);;
s1 := (3,4);;
s2 := (2,3)(6,7);;
s3 := (1,2)(6,7);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(7)!(4,5);
s1 := Sym(7)!(3,4);
s2 := Sym(7)!(2,3)(6,7);
s3 := Sym(7)!(1,2)(6,7);
poly := sub<Sym(7)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >;

```
References :
1. Theorem 11E10, McMullen P., Schulte, E.; Abstract Regular Polytopes (Camb\ ridge University Press, 2002)

to this polytope