Questions?
See the FAQ
or other info.

# Polytope of Type {10,6}

Atlas Canonical Name : {10,6}*240d
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 3
Schlafli Type : {10,6}
Number of vertices, edges, etc : 20, 60, 12
Order of s0s1s2 : 10
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{10,6,2} of size 480
{10,6,4} of size 960
{10,6,6} of size 1440
{10,6,8} of size 1920
Vertex Figure Of :
{2,10,6} of size 480
{4,10,6} of size 960
{6,10,6} of size 1440
{8,10,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,6}*120c, {10,3}*120a
4-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,6}*480c
4-fold covers : {10,12}*960c, {20,6}*960c, {10,12}*960d, {20,6}*960d, {10,6}*960b
6-fold covers : {10,6}*1440f, {30,6}*1440e, {30,6}*1440f
8-fold covers : {20,12}*1920g, {10,24}*1920d, {40,6}*1920f, {10,12}*1920c, {20,6}*1920d, {20,12}*1920k, {20,12}*1920l, {20,12}*1920m, {10,24}*1920f, {40,6}*1920h
Permutation Representation (GAP) :
```s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4);;
s2 := (2,5)(3,4)(6,8)(7,9);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(9)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(9)!(1,2)(3,4);
s2 := Sym(9)!(2,5)(3,4)(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2 >;

```
References : None.
to this polytope