Questions?
See the FAQ
or other info.

Polytope of Type {3,5,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,5,2,2}*240
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 5
Schlafli Type : {3,5,2,2}
Number of vertices, edges, etc : 6, 15, 10, 2, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,5,2,2,2} of size 480
   {3,5,2,2,3} of size 720
   {3,5,2,2,4} of size 960
   {3,5,2,2,5} of size 1200
   {3,5,2,2,6} of size 1440
   {3,5,2,2,7} of size 1680
   {3,5,2,2,8} of size 1920
Vertex Figure Of :
   {2,3,5,2,2} of size 480
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,5,2,4}*480, {3,5,2,2}*480, {3,10,2,2}*480a, {3,10,2,2}*480b, {6,5,2,2}*480b, {6,5,2,2}*480c
   3-fold covers : {3,5,2,6}*720
   4-fold covers : {3,5,2,8}*960, {3,5,2,4}*960, {3,10,2,4}*960a, {3,10,2,4}*960b, {3,10,4,2}*960, {6,5,2,4}*960b, {6,5,2,4}*960c, {3,10,2,2}*960, {6,5,2,2}*960b, {6,10,2,2}*960c, {6,10,2,2}*960d, {6,10,2,2}*960e, {6,10,2,2}*960f
   5-fold covers : {3,5,2,10}*1200
   6-fold covers : {3,5,2,12}*1440, {3,5,2,6}*1440, {3,10,2,2}*1440, {3,10,2,6}*1440a, {3,10,2,6}*1440b, {3,10,6,2}*1440, {3,15,2,2}*1440, {6,5,2,6}*1440b, {6,5,2,6}*1440c, {6,15,2,2}*1440
   7-fold covers : {3,5,2,14}*1680
   8-fold covers : {3,5,2,16}*1920, {3,10,4,4}*1920, {3,5,2,8}*1920, {3,10,2,8}*1920a, {3,10,2,8}*1920b, {3,10,8,2}*1920, {6,5,2,8}*1920b, {6,5,2,8}*1920c, {3,10,2,4}*1920, {3,10,4,2}*1920, {6,5,2,4}*1920b, {6,10,2,4}*1920c, {6,10,2,4}*1920d, {6,10,2,4}*1920e, {6,10,2,4}*1920f, {6,10,4,2}*1920b, {6,10,4,2}*1920c, {6,20,2,2}*1920b, {6,20,2,2}*1920c, {12,10,2,2}*1920c, {12,10,2,2}*1920d, {6,10,2,2}*1920b, {3,20,2,2}*1920, {12,5,2,2}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(4,5);;
s2 := (2,4)(3,5);;
s3 := (6,7);;
s4 := (8,9);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,5);
s1 := Sym(9)!(1,2)(4,5);
s2 := Sym(9)!(2,4)(3,5);
s3 := Sym(9)!(6,7);
s4 := Sym(9)!(8,9);
poly := sub<Sym(9)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 >; 
 

to this polytope