Questions?
See the FAQ
or other info.

Polytope of Type {5,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,6,2}*240b
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 4
Schlafli Type : {5,6,2}
Number of vertices, edges, etc : 10, 30, 12, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,6,2,2} of size 480
   {5,6,2,3} of size 720
   {5,6,2,4} of size 960
   {5,6,2,5} of size 1200
   {5,6,2,6} of size 1440
   {5,6,2,7} of size 1680
   {5,6,2,8} of size 1920
Vertex Figure Of :
   {2,5,6,2} of size 480
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,3,2}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,6,2}*480b, {10,6,2}*480e, {10,6,2}*480f
   3-fold covers : {15,6,2}*720
   4-fold covers : {5,6,4}*960b, {20,6,2}*960a, {20,6,2}*960b, {5,12,2}*960, {10,6,2}*960c
   5-fold covers : {5,6,2}*1200
   6-fold covers : {5,6,6}*1440b, {10,6,2}*1440c, {15,6,2}*1440c, {15,6,2}*1440d, {30,6,2}*1440a, {30,6,2}*1440b
   7-fold covers : {35,6,2}*1680
   8-fold covers : {5,6,8}*1920b, {40,6,2}*1920d, {40,6,2}*1920e, {10,6,4}*1920d, {10,12,2}*1920c, {20,6,2}*1920c, {5,12,4}*1920, {10,12,2}*1920e, {20,6,2}*1920e, {10,6,2}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 3, 5)( 4,11)( 6,12)( 7, 9);;
s2 := ( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(14)!( 3, 5)( 4,11)( 6,12)( 7, 9);
s2 := Sym(14)!( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 >; 
 

to this polytope