Questions?
See the FAQ
or other info.

Polytope of Type {2,3,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,10}*240a
if this polytope has a name.
Group : SmallGroup(240,190)
Rank : 4
Schlafli Type : {2,3,10}
Number of vertices, edges, etc : 2, 6, 30, 20
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,3,10,2} of size 480
Vertex Figure Of :
   {2,2,3,10} of size 480
   {3,2,3,10} of size 720
   {4,2,3,10} of size 960
   {5,2,3,10} of size 1200
   {6,2,3,10} of size 1440
   {7,2,3,10} of size 1680
   {8,2,3,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,5}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,3,10}*480, {2,6,10}*480e, {2,6,10}*480f
   3-fold covers : {2,3,10}*720
   4-fold covers : {4,6,10}*960d, {2,12,10}*960c, {2,12,10}*960d, {2,3,20}*960, {2,6,10}*960c
   5-fold covers : {2,15,10}*1200
   6-fold covers : {6,6,10}*1440d, {2,3,10}*1440b, {2,3,30}*1440, {2,6,10}*1440b, {2,6,10}*1440c, {2,6,30}*1440b
   7-fold covers : {2,21,10}*1680
   8-fold covers : {4,12,10}*1920f, {4,12,10}*1920g, {8,6,10}*1920f, {2,24,10}*1920c, {2,24,10}*1920d, {4,6,10}*1920d, {2,6,20}*1920c, {2,12,10}*1920c, {2,6,20}*1920e, {2,12,10}*1920e, {2,6,10}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,11)( 6,14)( 7, 9)( 8,10);;
s2 := ( 3, 4)( 5, 6)( 7,13)(10,12);;
s3 := ( 3, 5)( 4,10)( 6,14)( 7, 9)( 8,11)(12,13);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s1*s2*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!( 4,11)( 6,14)( 7, 9)( 8,10);
s2 := Sym(14)!( 3, 4)( 5, 6)( 7,13)(10,12);
s3 := Sym(14)!( 3, 5)( 4,10)( 6,14)( 7, 9)( 8,11)(12,13);
poly := sub<Sym(14)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, s2*s1*s2*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s3 >; 
 

to this polytope