Questions?
See the FAQ
or other info.

Polytope of Type {5,2,6,2}

Atlas Canonical Name : {5,2,6,2}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 5
Schlafli Type : {5,2,6,2}
Number of vertices, edges, etc : 5, 5, 6, 6, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,6,2,2} of size 480
{5,2,6,2,3} of size 720
{5,2,6,2,4} of size 960
{5,2,6,2,5} of size 1200
{5,2,6,2,6} of size 1440
{5,2,6,2,7} of size 1680
{5,2,6,2,8} of size 1920
Vertex Figure Of :
{2,5,2,6,2} of size 480
{3,5,2,6,2} of size 1440
{5,5,2,6,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,3,2}*120
3-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,12,2}*480, {5,2,6,4}*480a, {10,2,6,2}*480
3-fold covers : {5,2,18,2}*720, {5,2,6,6}*720a, {5,2,6,6}*720c, {15,2,6,2}*720
4-fold covers : {5,2,12,4}*960a, {5,2,24,2}*960, {5,2,6,8}*960, {10,2,12,2}*960, {20,2,6,2}*960, {10,2,6,4}*960a, {10,4,6,2}*960, {5,2,6,4}*960
5-fold covers : {25,2,6,2}*1200, {5,2,6,10}*1200, {5,10,6,2}*1200, {5,2,30,2}*1200
6-fold covers : {5,2,36,2}*1440, {5,2,18,4}*1440a, {10,2,18,2}*1440, {5,2,6,12}*1440a, {5,2,12,6}*1440a, {5,2,12,6}*1440b, {5,2,6,12}*1440c, {15,2,12,2}*1440, {15,2,6,4}*1440a, {10,2,6,6}*1440a, {10,2,6,6}*1440c, {10,6,6,2}*1440a, {10,6,6,2}*1440b, {30,2,6,2}*1440
7-fold covers : {5,2,6,14}*1680, {5,2,42,2}*1680, {35,2,6,2}*1680
8-fold covers : {5,2,12,8}*1920a, {5,2,24,4}*1920a, {5,2,12,8}*1920b, {5,2,24,4}*1920b, {5,2,12,4}*1920a, {5,2,6,16}*1920, {5,2,48,2}*1920, {10,2,12,4}*1920a, {10,4,12,2}*1920, {20,4,6,2}*1920, {10,4,6,4}*1920a, {20,2,6,4}*1920a, {20,2,12,2}*1920, {10,2,6,8}*1920, {10,8,6,2}*1920, {10,2,24,2}*1920, {40,2,6,2}*1920, {5,2,12,4}*1920b, {5,2,6,4}*1920b, {5,2,12,4}*1920c, {5,2,6,8}*1920b, {5,2,6,8}*1920c, {10,2,6,4}*1920, {10,4,6,2}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 8, 9)(10,11);;
s3 := ( 6,10)( 7, 8)( 9,11);;
s4 := (12,13);;
poly := Group([s0,s1,s2,s3,s4]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(13)!(2,3)(4,5);
s1 := Sym(13)!(1,2)(3,4);
s2 := Sym(13)!( 8, 9)(10,11);
s3 := Sym(13)!( 6,10)( 7, 8)( 9,11);
s4 := Sym(13)!(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

to this polytope