Questions?
See the FAQ
or other info.

Polytope of Type {10,2,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,3,2}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 5
Schlafli Type : {10,2,3,2}
Number of vertices, edges, etc : 10, 10, 3, 3, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,2,3,2,2} of size 480
   {10,2,3,2,3} of size 720
   {10,2,3,2,4} of size 960
   {10,2,3,2,5} of size 1200
   {10,2,3,2,6} of size 1440
   {10,2,3,2,7} of size 1680
   {10,2,3,2,8} of size 1920
Vertex Figure Of :
   {2,10,2,3,2} of size 480
   {4,10,2,3,2} of size 960
   {5,10,2,3,2} of size 1200
   {3,10,2,3,2} of size 1440
   {3,10,2,3,2} of size 1440
   {5,10,2,3,2} of size 1440
   {5,10,2,3,2} of size 1440
   {6,10,2,3,2} of size 1440
   {8,10,2,3,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,3,2}*120
   5-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,2,3,2}*480, {10,2,6,2}*480
   3-fold covers : {10,2,9,2}*720, {10,2,3,6}*720, {10,6,3,2}*720, {30,2,3,2}*720
   4-fold covers : {40,2,3,2}*960, {10,2,12,2}*960, {20,2,6,2}*960, {10,2,6,4}*960a, {10,4,6,2}*960, {10,2,3,4}*960, {10,4,3,2}*960
   5-fold covers : {50,2,3,2}*1200, {10,2,15,2}*1200
   6-fold covers : {20,2,9,2}*1440, {10,2,18,2}*1440, {20,2,3,6}*1440, {20,6,3,2}*1440, {60,2,3,2}*1440, {10,2,6,6}*1440a, {10,2,6,6}*1440c, {10,6,6,2}*1440a, {10,6,6,2}*1440b, {30,2,6,2}*1440
   7-fold covers : {10,2,21,2}*1680, {70,2,3,2}*1680
   8-fold covers : {80,2,3,2}*1920, {10,2,12,4}*1920a, {10,4,12,2}*1920, {20,4,6,2}*1920, {10,4,6,4}*1920a, {20,2,6,4}*1920a, {20,2,12,2}*1920, {10,2,6,8}*1920, {10,8,6,2}*1920, {10,2,24,2}*1920, {40,2,6,2}*1920, {20,2,3,4}*1920, {20,4,3,2}*1920, {10,2,3,8}*1920, {10,8,3,2}*1920, {10,2,6,4}*1920, {10,4,6,2}*1920
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13);;
s3 := (11,12);;
s4 := (14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(15)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(15)!(12,13);
s3 := Sym(15)!(11,12);
s4 := Sym(15)!(14,15);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope