Questions?
See the FAQ
or other info.

Polytope of Type {2,6,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,2,5}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 5
Schlafli Type : {2,6,2,5}
Number of vertices, edges, etc : 2, 6, 6, 5, 5
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,2,5,2} of size 480
   {2,6,2,5,3} of size 1440
   {2,6,2,5,5} of size 1440
Vertex Figure Of :
   {2,2,6,2,5} of size 480
   {3,2,6,2,5} of size 720
   {4,2,6,2,5} of size 960
   {5,2,6,2,5} of size 1200
   {6,2,6,2,5} of size 1440
   {7,2,6,2,5} of size 1680
   {8,2,6,2,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,2,5}*120
   3-fold quotients : {2,2,2,5}*80
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,12,2,5}*480, {4,6,2,5}*480a, {2,6,2,10}*480
   3-fold covers : {2,18,2,5}*720, {6,6,2,5}*720a, {6,6,2,5}*720b, {2,6,2,15}*720
   4-fold covers : {4,12,2,5}*960a, {2,24,2,5}*960, {8,6,2,5}*960, {2,12,2,10}*960, {2,6,2,20}*960, {2,6,4,10}*960, {4,6,2,10}*960a, {4,6,2,5}*960
   5-fold covers : {2,6,2,25}*1200, {2,6,10,5}*1200, {10,6,2,5}*1200, {2,30,2,5}*1200
   6-fold covers : {2,36,2,5}*1440, {4,18,2,5}*1440a, {2,18,2,10}*1440, {6,12,2,5}*1440a, {6,12,2,5}*1440b, {12,6,2,5}*1440a, {12,6,2,5}*1440c, {2,12,2,15}*1440, {4,6,2,15}*1440a, {2,6,6,10}*1440a, {2,6,6,10}*1440c, {6,6,2,10}*1440a, {6,6,2,10}*1440b, {2,6,2,30}*1440
   7-fold covers : {14,6,2,5}*1680, {2,42,2,5}*1680, {2,6,2,35}*1680
   8-fold covers : {8,12,2,5}*1920a, {4,24,2,5}*1920a, {8,12,2,5}*1920b, {4,24,2,5}*1920b, {4,12,2,5}*1920a, {16,6,2,5}*1920, {2,48,2,5}*1920, {2,12,4,10}*1920, {4,12,2,10}*1920a, {2,6,4,20}*1920, {4,6,4,10}*1920a, {4,6,2,20}*1920a, {2,12,2,20}*1920, {2,6,8,10}*1920, {8,6,2,10}*1920, {2,24,2,10}*1920, {2,6,2,40}*1920, {4,12,2,5}*1920b, {4,6,2,5}*1920b, {4,12,2,5}*1920c, {8,6,2,5}*1920b, {8,6,2,5}*1920c, {2,6,4,10}*1920, {4,6,2,10}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (5,6)(7,8);;
s2 := (3,7)(4,5)(6,8);;
s3 := (10,11)(12,13);;
s4 := ( 9,10)(11,12);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!(1,2);
s1 := Sym(13)!(5,6)(7,8);
s2 := Sym(13)!(3,7)(4,5)(6,8);
s3 := Sym(13)!(10,11)(12,13);
s4 := Sym(13)!( 9,10)(11,12);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope