Questions?
See the FAQ
or other info.

Polytope of Type {32,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {32,2,2}*256
if this polytope has a name.
Group : SmallGroup(256,26963)
Rank : 4
Schlafli Type : {32,2,2}
Number of vertices, edges, etc : 32, 32, 2, 2
Order of s0s1s2s3 : 32
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {32,2,2,2} of size 512
   {32,2,2,3} of size 768
   {32,2,2,5} of size 1280
   {32,2,2,7} of size 1792
Vertex Figure Of :
   {2,32,2,2} of size 512
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {16,2,2}*128
   4-fold quotients : {8,2,2}*64
   8-fold quotients : {4,2,2}*32
   16-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {32,4,2}*512a, {64,2,2}*512
   3-fold covers : {32,2,6}*768, {32,6,2}*768, {96,2,2}*768
   5-fold covers : {32,2,10}*1280, {32,10,2}*1280, {160,2,2}*1280
   7-fold covers : {32,2,14}*1792, {32,14,2}*1792, {224,2,2}*1792
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)
(22,23)(24,25)(26,27)(28,29)(30,31);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22)(23,24)(25,26)(27,28)(29,30)(31,32);;
s2 := (33,34);;
s3 := (35,36);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(36)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);
s1 := Sym(36)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32);
s2 := Sym(36)!(33,34);
s3 := Sym(36)!(35,36);
poly := sub<Sym(36)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope