Questions?
See the FAQ
or other info.

Polytope of Type {8,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,8}*256e
if this polytope has a name.
Group : SmallGroup(256,6665)
Rank : 3
Schlafli Type : {8,8}
Number of vertices, edges, etc : 16, 64, 16
Order of s0s1s2 : 4
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {8,8,2} of size 512
Vertex Figure Of :
   {2,8,8} of size 512
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,8}*128b
   4-fold quotients : {4,4}*64
   8-fold quotients : {4,4}*32
   16-fold quotients : {2,4}*16, {4,2}*16
   32-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,8}*512h, {8,8}*512k, {8,8}*512s
   3-fold covers : {8,24}*768e, {24,8}*768f
   5-fold covers : {8,40}*1280e, {40,8}*1280f
   7-fold covers : {8,56}*1792e, {56,8}*1792f
Permutation Representation (GAP) :
s0 := (  1, 65)(  2, 66)(  3, 68)(  4, 67)(  5, 69)(  6, 70)(  7, 72)(  8, 71)
(  9, 80)( 10, 79)( 11, 77)( 12, 78)( 13, 75)( 14, 76)( 15, 74)( 16, 73)
( 17, 82)( 18, 81)( 19, 83)( 20, 84)( 21, 86)( 22, 85)( 23, 87)( 24, 88)
( 25, 95)( 26, 96)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 89)( 32, 90)
( 33, 97)( 34, 98)( 35,100)( 36, 99)( 37,101)( 38,102)( 39,104)( 40,103)
( 41,112)( 42,111)( 43,109)( 44,110)( 45,107)( 46,108)( 47,106)( 48,105)
( 49,114)( 50,113)( 51,115)( 52,116)( 53,118)( 54,117)( 55,119)( 56,120)
( 57,127)( 58,128)( 59,126)( 60,125)( 61,124)( 62,123)( 63,121)( 64,122);;
s1 := (  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 18)( 19, 20)( 21, 24)( 22, 23)
( 25, 26)( 27, 28)( 29, 32)( 30, 31)( 33, 41)( 34, 42)( 35, 43)( 36, 44)
( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 49, 59)( 50, 60)( 51, 57)( 52, 58)
( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 65, 81)( 66, 82)( 67, 83)( 68, 84)
( 69, 87)( 70, 88)( 71, 85)( 72, 86)( 73, 89)( 74, 90)( 75, 91)( 76, 92)
( 77, 95)( 78, 96)( 79, 93)( 80, 94)( 97,126)( 98,125)( 99,128)(100,127)
(101,123)(102,124)(103,121)(104,122)(105,117)(106,118)(107,119)(108,120)
(109,116)(110,115)(111,114)(112,113);;
s2 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,102)(  6,101)(  7,104)(  8,103)
(  9,112)( 10,111)( 11,110)( 12,109)( 13,108)( 14,107)( 15,106)( 16,105)
( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)( 24,115)
( 25,123)( 26,124)( 27,121)( 28,122)( 29,128)( 30,127)( 31,126)( 32,125)
( 33, 65)( 34, 66)( 35, 67)( 36, 68)( 37, 70)( 38, 69)( 39, 72)( 40, 71)
( 41, 80)( 42, 79)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 74)( 48, 73)
( 49, 86)( 50, 85)( 51, 88)( 52, 87)( 53, 82)( 54, 81)( 55, 84)( 56, 83)
( 57, 91)( 58, 92)( 59, 89)( 60, 90)( 61, 96)( 62, 95)( 63, 94)( 64, 93);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  1, 65)(  2, 66)(  3, 68)(  4, 67)(  5, 69)(  6, 70)(  7, 72)
(  8, 71)(  9, 80)( 10, 79)( 11, 77)( 12, 78)( 13, 75)( 14, 76)( 15, 74)
( 16, 73)( 17, 82)( 18, 81)( 19, 83)( 20, 84)( 21, 86)( 22, 85)( 23, 87)
( 24, 88)( 25, 95)( 26, 96)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 89)
( 32, 90)( 33, 97)( 34, 98)( 35,100)( 36, 99)( 37,101)( 38,102)( 39,104)
( 40,103)( 41,112)( 42,111)( 43,109)( 44,110)( 45,107)( 46,108)( 47,106)
( 48,105)( 49,114)( 50,113)( 51,115)( 52,116)( 53,118)( 54,117)( 55,119)
( 56,120)( 57,127)( 58,128)( 59,126)( 60,125)( 61,124)( 62,123)( 63,121)
( 64,122);
s1 := Sym(128)!(  5,  7)(  6,  8)( 13, 15)( 14, 16)( 17, 18)( 19, 20)( 21, 24)
( 22, 23)( 25, 26)( 27, 28)( 29, 32)( 30, 31)( 33, 41)( 34, 42)( 35, 43)
( 36, 44)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 49, 59)( 50, 60)( 51, 57)
( 52, 58)( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 65, 81)( 66, 82)( 67, 83)
( 68, 84)( 69, 87)( 70, 88)( 71, 85)( 72, 86)( 73, 89)( 74, 90)( 75, 91)
( 76, 92)( 77, 95)( 78, 96)( 79, 93)( 80, 94)( 97,126)( 98,125)( 99,128)
(100,127)(101,123)(102,124)(103,121)(104,122)(105,117)(106,118)(107,119)
(108,120)(109,116)(110,115)(111,114)(112,113);
s2 := Sym(128)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,102)(  6,101)(  7,104)
(  8,103)(  9,112)( 10,111)( 11,110)( 12,109)( 13,108)( 14,107)( 15,106)
( 16,105)( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)
( 24,115)( 25,123)( 26,124)( 27,121)( 28,122)( 29,128)( 30,127)( 31,126)
( 32,125)( 33, 65)( 34, 66)( 35, 67)( 36, 68)( 37, 70)( 38, 69)( 39, 72)
( 40, 71)( 41, 80)( 42, 79)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 74)
( 48, 73)( 49, 86)( 50, 85)( 51, 88)( 52, 87)( 53, 82)( 54, 81)( 55, 84)
( 56, 83)( 57, 91)( 58, 92)( 59, 89)( 60, 90)( 61, 96)( 62, 95)( 63, 94)
( 64, 93);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0 >; 
 
References : None.
to this polytope