Questions?
See the FAQ
or other info.

Polytope of Type {2,11,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,11,2,3}*264
if this polytope has a name.
Group : SmallGroup(264,34)
Rank : 5
Schlafli Type : {2,11,2,3}
Number of vertices, edges, etc : 2, 11, 11, 3, 3
Order of s0s1s2s3s4 : 66
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,11,2,3,2} of size 528
   {2,11,2,3,3} of size 1056
   {2,11,2,3,4} of size 1056
   {2,11,2,3,6} of size 1584
Vertex Figure Of :
   {2,2,11,2,3} of size 528
   {3,2,11,2,3} of size 792
   {4,2,11,2,3} of size 1056
   {5,2,11,2,3} of size 1320
   {6,2,11,2,3} of size 1584
   {7,2,11,2,3} of size 1848
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,11,2,6}*528, {2,22,2,3}*528
   3-fold covers : {2,11,2,9}*792, {2,33,2,3}*792
   4-fold covers : {2,11,2,12}*1056, {2,44,2,3}*1056, {4,22,2,3}*1056, {2,22,2,6}*1056
   5-fold covers : {2,11,2,15}*1320, {2,55,2,3}*1320
   6-fold covers : {2,11,2,18}*1584, {2,22,2,9}*1584, {2,22,6,3}*1584, {6,22,2,3}*1584, {2,33,2,6}*1584, {2,66,2,3}*1584
   7-fold covers : {2,11,2,21}*1848, {2,77,2,3}*1848
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);;
s3 := (15,16);;
s4 := (14,15);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!(1,2);
s1 := Sym(16)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);
s2 := Sym(16)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);
s3 := Sym(16)!(15,16);
s4 := Sym(16)!(14,15);
poly := sub<Sym(16)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope