Questions?
See the FAQ
or other info.

Polytope of Type {6,2,11}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,11}*264
if this polytope has a name.
Group : SmallGroup(264,34)
Rank : 4
Schlafli Type : {6,2,11}
Number of vertices, edges, etc : 6, 6, 11, 11
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,2,11,2} of size 528
Vertex Figure Of :
   {2,6,2,11} of size 528
   {3,6,2,11} of size 792
   {4,6,2,11} of size 1056
   {3,6,2,11} of size 1056
   {4,6,2,11} of size 1056
   {4,6,2,11} of size 1056
   {4,6,2,11} of size 1584
   {6,6,2,11} of size 1584
   {6,6,2,11} of size 1584
   {6,6,2,11} of size 1584
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,11}*132
   3-fold quotients : {2,2,11}*88
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,2,11}*528, {6,2,22}*528
   3-fold covers : {18,2,11}*792, {6,2,33}*792
   4-fold covers : {24,2,11}*1056, {12,2,22}*1056, {6,2,44}*1056, {6,4,22}*1056
   5-fold covers : {30,2,11}*1320, {6,2,55}*1320
   6-fold covers : {36,2,11}*1584, {18,2,22}*1584, {12,2,33}*1584, {6,6,22}*1584a, {6,6,22}*1584c, {6,2,66}*1584
   7-fold covers : {42,2,11}*1848, {6,2,77}*1848
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(12,13)(14,15)(16,17);;
s3 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(3,4)(5,6);
s1 := Sym(17)!(1,5)(2,3)(4,6);
s2 := Sym(17)!( 8, 9)(10,11)(12,13)(14,15)(16,17);
s3 := Sym(17)!( 7, 8)( 9,10)(11,12)(13,14)(15,16);
poly := sub<Sym(17)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope