Questions?
See the FAQ
or other info.

Polytope of Type {4,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6}*288f
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 4
Schlafli Type : {4,6,6}
Number of vertices, edges, etc : 4, 12, 18, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,6,6,2} of size 576
   {4,6,6,3} of size 864
   {4,6,6,4} of size 1152
   {4,6,6,6} of size 1728
   {4,6,6,6} of size 1728
Vertex Figure Of :
   {2,4,6,6} of size 576
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,6}*144
   3-fold quotients : {4,6,2}*96b
   6-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,6,6}*576b
   3-fold covers : {4,18,6}*864e, {4,6,6}*864f, {12,6,6}*864h
   4-fold covers : {8,6,6}*1152a, {4,12,6}*1152f, {4,6,6}*1152e, {4,12,6}*1152i, {8,6,6}*1152c, {8,6,6}*1152e, {4,6,12}*1152d, {4,6,6}*1152h, {4,6,12}*1152h
   5-fold covers : {20,6,6}*1440d, {4,30,6}*1440f
   6-fold covers : {4,18,6}*1728b, {4,6,6}*1728a, {4,6,6}*1728c, {12,6,6}*1728c, {12,6,6}*1728d
Permutation Representation (GAP) :
s0 := ( 1,38)( 2,37)( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)(10,45)
(11,48)(12,47)(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)(21,58)
(22,57)(23,60)(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)(32,67)
(33,70)(34,69)(35,72)(36,71);;
s1 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,25)(14,27)(15,26)(16,28)(17,33)
(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)(38,39)(41,45)(42,47)(43,46)
(44,48)(49,61)(50,63)(51,62)(52,64)(53,69)(54,71)(55,70)(56,72)(57,65)(58,67)
(59,66)(60,68);;
s2 := ( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)(10,58)
(11,60)(12,59)(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)(21,45)
(22,46)(23,48)(24,47)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)(32,63)
(33,69)(34,70)(35,72)(36,71);;
s3 := ( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)(30,34)
(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)(65,69)
(66,70)(67,71)(68,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(72)!( 1,38)( 2,37)( 3,40)( 4,39)( 5,42)( 6,41)( 7,44)( 8,43)( 9,46)
(10,45)(11,48)(12,47)(13,50)(14,49)(15,52)(16,51)(17,54)(18,53)(19,56)(20,55)
(21,58)(22,57)(23,60)(24,59)(25,62)(26,61)(27,64)(28,63)(29,66)(30,65)(31,68)
(32,67)(33,70)(34,69)(35,72)(36,71);
s1 := Sym(72)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,25)(14,27)(15,26)(16,28)
(17,33)(18,35)(19,34)(20,36)(21,29)(22,31)(23,30)(24,32)(38,39)(41,45)(42,47)
(43,46)(44,48)(49,61)(50,63)(51,62)(52,64)(53,69)(54,71)(55,70)(56,72)(57,65)
(58,67)(59,66)(60,68);
s2 := Sym(72)!( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)
(10,58)(11,60)(12,59)(13,41)(14,42)(15,44)(16,43)(17,37)(18,38)(19,40)(20,39)
(21,45)(22,46)(23,48)(24,47)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)
(32,63)(33,69)(34,70)(35,72)(36,71);
s3 := Sym(72)!( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)
(30,34)(31,35)(32,36)(41,45)(42,46)(43,47)(44,48)(53,57)(54,58)(55,59)(56,60)
(65,69)(66,70)(67,71)(68,72);
poly := sub<Sym(72)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s0*s1*s2*s0*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 >; 
 
References : None.
to this polytope