Questions?
See the FAQ
or other info.

Polytope of Type {18,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4,2}*288a
if this polytope has a name.
Group : SmallGroup(288,356)
Rank : 4
Schlafli Type : {18,4,2}
Number of vertices, edges, etc : 18, 36, 4, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {18,4,2,2} of size 576
   {18,4,2,3} of size 864
   {18,4,2,4} of size 1152
   {18,4,2,5} of size 1440
   {18,4,2,6} of size 1728
Vertex Figure Of :
   {2,18,4,2} of size 576
   {4,18,4,2} of size 1152
   {4,18,4,2} of size 1152
   {6,18,4,2} of size 1728
   {6,18,4,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {18,2,2}*144
   3-fold quotients : {6,4,2}*96a
   4-fold quotients : {9,2,2}*72
   6-fold quotients : {6,2,2}*48
   9-fold quotients : {2,4,2}*32
   12-fold quotients : {3,2,2}*24
   18-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {36,4,2}*576a, {18,4,4}*576, {18,8,2}*576
   3-fold covers : {54,4,2}*864a, {18,12,2}*864a, {18,4,6}*864, {18,12,2}*864b
   4-fold covers : {36,4,4}*1152, {18,4,8}*1152a, {18,8,4}*1152a, {36,8,2}*1152a, {72,4,2}*1152a, {18,4,8}*1152b, {18,8,4}*1152b, {36,8,2}*1152b, {72,4,2}*1152b, {18,4,4}*1152a, {36,4,2}*1152a, {18,16,2}*1152, {18,4,2}*1152b
   5-fold covers : {18,20,2}*1440a, {18,4,10}*1440, {90,4,2}*1440a
   6-fold covers : {108,4,2}*1728a, {54,4,4}*1728, {54,8,2}*1728, {18,4,12}*1728, {18,12,4}*1728a, {36,4,6}*1728, {18,24,2}*1728a, {18,8,6}*1728, {36,12,2}*1728a, {36,12,2}*1728b, {18,24,2}*1728b, {18,12,4}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(20,21)(22,26)
(23,25)(24,27)(29,30)(31,35)(32,34)(33,36);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,13)(11,15)(12,14)(16,17)(19,31)(20,33)
(21,32)(22,28)(23,30)(24,29)(25,35)(26,34)(27,36);;
s2 := ( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)
(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(11,12)(13,17)(14,16)(15,18)(20,21)
(22,26)(23,25)(24,27)(29,30)(31,35)(32,34)(33,36);
s1 := Sym(38)!( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,13)(11,15)(12,14)(16,17)(19,31)
(20,33)(21,32)(22,28)(23,30)(24,29)(25,35)(26,34)(27,36);
s2 := Sym(38)!( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)
(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope