Questions?
See the FAQ
or other info.

# Polytope of Type {9,4,2,2}

Atlas Canonical Name : {9,4,2,2}*288
if this polytope has a name.
Group : SmallGroup(288,835)
Rank : 5
Schlafli Type : {9,4,2,2}
Number of vertices, edges, etc : 9, 18, 4, 2, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{9,4,2,2,2} of size 576
{9,4,2,2,3} of size 864
{9,4,2,2,4} of size 1152
{9,4,2,2,5} of size 1440
{9,4,2,2,6} of size 1728
Vertex Figure Of :
{2,9,4,2,2} of size 576
{4,9,4,2,2} of size 1152
{6,9,4,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,4,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {9,4,2,4}*576, {9,4,2,2}*576, {18,4,2,2}*576b, {18,4,2,2}*576c
3-fold covers : {27,4,2,2}*864, {9,4,2,6}*864
4-fold covers : {9,4,4,2}*1152a, {9,4,2,8}*1152, {36,4,2,2}*1152b, {36,4,2,2}*1152c, {9,4,2,4}*1152, {9,4,4,2}*1152b, {18,4,2,4}*1152b, {18,4,2,4}*1152c, {9,8,2,2}*1152, {18,4,2,2}*1152
5-fold covers : {9,4,2,10}*1440, {45,4,2,2}*1440
6-fold covers : {27,4,2,4}*1728, {27,4,2,2}*1728, {54,4,2,2}*1728b, {54,4,2,2}*1728c, {9,4,2,12}*1728, {9,4,2,6}*1728, {9,4,6,2}*1728, {9,12,2,2}*1728, {18,4,2,6}*1728b, {18,4,2,6}*1728c, {18,12,2,2}*1728c
Permutation Representation (GAP) :
```s0 := ( 1, 2)( 3, 6)( 4, 5)( 7,15)( 8,14)( 9,16)(10,12)(11,13)(17,23)(18,24)
(19,21)(20,22)(25,31)(26,32)(27,29)(28,30)(33,36)(34,35);;
s1 := ( 1, 5)( 2, 3)( 4,12)( 6, 8)( 7, 9)(10,21)(11,22)(13,15)(14,17)(16,18)
(19,29)(20,30)(23,25)(24,26)(27,31)(28,35)(32,33)(34,36);;
s2 := ( 1,15)( 2, 7)( 3, 9)( 6,16)(10,20)(12,22)(17,26)(19,28)(21,30)(23,32)
(25,33)(31,36);;
s3 := (37,38);;
s4 := (39,40);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(40)!( 1, 2)( 3, 6)( 4, 5)( 7,15)( 8,14)( 9,16)(10,12)(11,13)(17,23)
(18,24)(19,21)(20,22)(25,31)(26,32)(27,29)(28,30)(33,36)(34,35);
s1 := Sym(40)!( 1, 5)( 2, 3)( 4,12)( 6, 8)( 7, 9)(10,21)(11,22)(13,15)(14,17)
(16,18)(19,29)(20,30)(23,25)(24,26)(27,31)(28,35)(32,33)(34,36);
s2 := Sym(40)!( 1,15)( 2, 7)( 3, 9)( 6,16)(10,20)(12,22)(17,26)(19,28)(21,30)
(23,32)(25,33)(31,36);
s3 := Sym(40)!(37,38);
s4 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope