Questions?
See the FAQ
or other info.

Polytope of Type {18,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4,2}*288b
if this polytope has a name.
Group : SmallGroup(288,835)
Rank : 4
Schlafli Type : {18,4,2}
Number of vertices, edges, etc : 18, 36, 4, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {18,4,2,2} of size 576
   {18,4,2,3} of size 864
   {18,4,2,4} of size 1152
   {18,4,2,5} of size 1440
   {18,4,2,6} of size 1728
Vertex Figure Of :
   {2,18,4,2} of size 576
   {4,18,4,2} of size 1152
   {4,18,4,2} of size 1152
   {4,18,4,2} of size 1152
   {6,18,4,2} of size 1728
   {6,18,4,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,4,2}*144
   3-fold quotients : {6,4,2}*96c
   6-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {36,4,2}*576b, {36,4,2}*576c, {18,4,2}*576
   3-fold covers : {54,4,2}*864b
   4-fold covers : {18,4,4}*1152b, {18,4,2}*1152a, {72,4,2}*1152c, {72,4,2}*1152d, {36,4,2}*1152b, {18,4,4}*1152d, {18,4,2}*1152b, {36,4,2}*1152c, {18,8,2}*1152b, {18,8,2}*1152c
   5-fold covers : {90,4,2}*1440b
   6-fold covers : {108,4,2}*1728b, {108,4,2}*1728c, {54,4,2}*1728, {18,4,6}*1728b, {18,12,2}*1728a, {18,12,2}*1728b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)(17,25)
(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(38,39)(41,45)(42,47)(43,46)
(44,48)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)(58,71)
(59,70)(60,72);;
s1 := ( 1,49)( 2,50)( 3,52)( 4,51)( 5,57)( 6,58)( 7,60)( 8,59)( 9,53)(10,54)
(11,56)(12,55)(13,37)(14,38)(15,40)(16,39)(17,45)(18,46)(19,48)(20,47)(21,41)
(22,42)(23,44)(24,43)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)(32,63)
(33,69)(34,70)(35,72)(36,71);;
s2 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,44)
(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)(62,63)
(65,68)(66,67)(69,72)(70,71);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)
(17,25)(18,27)(19,26)(20,28)(21,33)(22,35)(23,34)(24,36)(38,39)(41,45)(42,47)
(43,46)(44,48)(49,65)(50,67)(51,66)(52,68)(53,61)(54,63)(55,62)(56,64)(57,69)
(58,71)(59,70)(60,72);
s1 := Sym(74)!( 1,49)( 2,50)( 3,52)( 4,51)( 5,57)( 6,58)( 7,60)( 8,59)( 9,53)
(10,54)(11,56)(12,55)(13,37)(14,38)(15,40)(16,39)(17,45)(18,46)(19,48)(20,47)
(21,41)(22,42)(23,44)(24,43)(25,65)(26,66)(27,68)(28,67)(29,61)(30,62)(31,64)
(32,63)(33,69)(34,70)(35,72)(36,71);
s2 := Sym(74)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)
(41,44)(42,43)(45,48)(46,47)(49,52)(50,51)(53,56)(54,55)(57,60)(58,59)(61,64)
(62,63)(65,68)(66,67)(69,72)(70,71);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope