Questions?
See the FAQ
or other info.

Polytope of Type {2,18,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,4}*288b
if this polytope has a name.
Group : SmallGroup(288,835)
Rank : 4
Schlafli Type : {2,18,4}
Number of vertices, edges, etc : 2, 18, 36, 4
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,18,4,2} of size 576
Vertex Figure Of :
   {2,2,18,4} of size 576
   {3,2,18,4} of size 864
   {4,2,18,4} of size 1152
   {5,2,18,4} of size 1440
   {6,2,18,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,9,4}*144
   3-fold quotients : {2,6,4}*96c
   6-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,36,4}*576b, {2,36,4}*576c, {4,18,4}*576b, {2,18,4}*576
   3-fold covers : {2,54,4}*864b, {6,18,4}*864c, {6,18,4}*864d
   4-fold covers : {4,36,4}*1152b, {4,36,4}*1152c, {2,18,4}*1152a, {2,72,4}*1152c, {2,72,4}*1152d, {8,18,4}*1152b, {2,36,4}*1152b, {4,18,4}*1152a, {2,18,4}*1152b, {2,36,4}*1152c, {2,18,8}*1152b, {2,18,8}*1152c, {4,18,4}*1152d
   5-fold covers : {10,18,4}*1440b, {2,90,4}*1440b
   6-fold covers : {2,108,4}*1728b, {2,108,4}*1728c, {4,54,4}*1728b, {2,54,4}*1728, {6,36,4}*1728c, {6,36,4}*1728d, {6,36,4}*1728e, {6,36,4}*1728f, {12,18,4}*1728c, {12,18,4}*1728d, {6,18,4}*1728a, {6,18,4}*1728b, {2,18,12}*1728a, {2,18,12}*1728b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,31)(16,33)(17,32)(18,34)(19,27)
(20,29)(21,28)(22,30)(23,35)(24,37)(25,36)(26,38)(40,41)(43,47)(44,49)(45,48)
(46,50)(51,67)(52,69)(53,68)(54,70)(55,63)(56,65)(57,64)(58,66)(59,71)(60,73)
(61,72)(62,74);;
s2 := ( 3,51)( 4,52)( 5,54)( 6,53)( 7,59)( 8,60)( 9,62)(10,61)(11,55)(12,56)
(13,58)(14,57)(15,39)(16,40)(17,42)(18,41)(19,47)(20,48)(21,50)(22,49)(23,43)
(24,44)(25,46)(26,45)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)(34,65)
(35,71)(36,72)(37,74)(38,73);;
s3 := ( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)(20,21)
(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)(43,46)
(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)(64,65)
(67,70)(68,69)(71,74)(72,73);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,31)(16,33)(17,32)(18,34)
(19,27)(20,29)(21,28)(22,30)(23,35)(24,37)(25,36)(26,38)(40,41)(43,47)(44,49)
(45,48)(46,50)(51,67)(52,69)(53,68)(54,70)(55,63)(56,65)(57,64)(58,66)(59,71)
(60,73)(61,72)(62,74);
s2 := Sym(74)!( 3,51)( 4,52)( 5,54)( 6,53)( 7,59)( 8,60)( 9,62)(10,61)(11,55)
(12,56)(13,58)(14,57)(15,39)(16,40)(17,42)(18,41)(19,47)(20,48)(21,50)(22,49)
(23,43)(24,44)(25,46)(26,45)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)
(34,65)(35,71)(36,72)(37,74)(38,73);
s3 := Sym(74)!( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)
(20,21)(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)
(43,46)(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)
(64,65)(67,70)(68,69)(71,74)(72,73);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope