Questions?
See the FAQ
or other info.

Polytope of Type {12,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,2}*288a
if this polytope has a name.
Group : SmallGroup(288,951)
Rank : 4
Schlafli Type : {12,6,2}
Number of vertices, edges, etc : 12, 36, 6, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,6,2,2} of size 576
   {12,6,2,3} of size 864
   {12,6,2,4} of size 1152
   {12,6,2,5} of size 1440
   {12,6,2,6} of size 1728
Vertex Figure Of :
   {2,12,6,2} of size 576
   {4,12,6,2} of size 1152
   {4,12,6,2} of size 1152
   {4,12,6,2} of size 1152
   {3,12,6,2} of size 1152
   {6,12,6,2} of size 1728
   {6,12,6,2} of size 1728
   {6,12,6,2} of size 1728
   {3,12,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,2}*144a
   3-fold quotients : {12,2,2}*96, {4,6,2}*96a
   6-fold quotients : {2,6,2}*48, {6,2,2}*48
   9-fold quotients : {4,2,2}*32
   12-fold quotients : {2,3,2}*24, {3,2,2}*24
   18-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,6,4}*576a, {24,6,2}*576a, {12,12,2}*576a
   3-fold covers : {36,6,2}*864a, {12,18,2}*864a, {12,6,2}*864b, {12,6,6}*864b, {12,6,6}*864c, {12,6,2}*864g
   4-fold covers : {12,12,4}*1152b, {12,24,2}*1152a, {24,12,2}*1152a, {12,24,2}*1152d, {24,12,2}*1152d, {12,12,2}*1152a, {12,6,8}*1152b, {24,6,4}*1152b, {48,6,2}*1152b, {12,12,2}*1152d, {12,6,4}*1152a, {12,6,2}*1152b
   5-fold covers : {12,6,10}*1440a, {12,30,2}*1440b, {60,6,2}*1440b
   6-fold covers : {36,6,4}*1728a, {12,18,4}*1728a, {12,6,4}*1728a, {72,6,2}*1728a, {24,18,2}*1728a, {24,6,2}*1728b, {12,36,2}*1728a, {36,12,2}*1728a, {12,12,2}*1728c, {24,6,6}*1728b, {24,6,6}*1728c, {24,6,2}*1728f, {12,6,12}*1728b, {12,6,12}*1728d, {12,12,6}*1728b, {12,12,6}*1728d, {12,12,2}*1728h, {12,6,4}*1728h
Permutation Representation (GAP) :
s0 := ( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)(10,46)
(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,64)(20,65)(21,66)
(22,70)(23,71)(24,72)(25,67)(26,68)(27,69)(28,55)(29,56)(30,57)(31,61)(32,62)
(33,63)(34,58)(35,59)(36,60);;
s1 := ( 1,58)( 2,60)( 3,59)( 4,55)( 5,57)( 6,56)( 7,61)( 8,63)( 9,62)(10,67)
(11,69)(12,68)(13,64)(14,66)(15,65)(16,70)(17,72)(18,71)(19,40)(20,42)(21,41)
(22,37)(23,39)(24,38)(25,43)(26,45)(27,44)(28,49)(29,51)(30,50)(31,46)(32,48)
(33,47)(34,52)(35,54)(36,53);;
s2 := ( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)(61,62)
(64,65)(67,68)(70,71);;
s3 := (73,74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)
(10,46)(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,64)(20,65)
(21,66)(22,70)(23,71)(24,72)(25,67)(26,68)(27,69)(28,55)(29,56)(30,57)(31,61)
(32,62)(33,63)(34,58)(35,59)(36,60);
s1 := Sym(74)!( 1,58)( 2,60)( 3,59)( 4,55)( 5,57)( 6,56)( 7,61)( 8,63)( 9,62)
(10,67)(11,69)(12,68)(13,64)(14,66)(15,65)(16,70)(17,72)(18,71)(19,40)(20,42)
(21,41)(22,37)(23,39)(24,38)(25,43)(26,45)(27,44)(28,49)(29,51)(30,50)(31,46)
(32,48)(33,47)(34,52)(35,54)(36,53);
s2 := Sym(74)!( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)
(28,29)(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)(58,59)
(61,62)(64,65)(67,68)(70,71);
s3 := Sym(74)!(73,74);
poly := sub<Sym(74)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope