Questions?
See the FAQ
or other info.

# Polytope of Type {4,2,6,3}

Atlas Canonical Name : {4,2,6,3}*288
if this polytope has a name.
Group : SmallGroup(288,958)
Rank : 5
Schlafli Type : {4,2,6,3}
Number of vertices, edges, etc : 4, 4, 6, 9, 3
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,2,6,3,2} of size 576
{4,2,6,3,4} of size 1152
{4,2,6,3,6} of size 1728
Vertex Figure Of :
{2,4,2,6,3} of size 576
{3,4,2,6,3} of size 864
{4,4,2,6,3} of size 1152
{6,4,2,6,3} of size 1728
{3,4,2,6,3} of size 1728
{6,4,2,6,3} of size 1728
{6,4,2,6,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,6,3}*144
3-fold quotients : {4,2,2,3}*96
6-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,2,6,3}*576, {4,4,6,3}*576, {4,2,6,6}*576b
3-fold covers : {4,2,6,9}*864, {4,2,6,3}*864, {12,2,6,3}*864, {4,6,6,3}*864d
4-fold covers : {8,4,6,3}*1152a, {4,8,6,3}*1152a, {8,4,6,3}*1152b, {4,8,6,3}*1152b, {4,4,6,3}*1152, {16,2,6,3}*1152, {4,4,6,6}*1152c, {4,2,12,6}*1152a, {4,2,6,12}*1152c, {8,2,6,6}*1152b, {4,2,6,3}*1152, {4,2,12,3}*1152
5-fold covers : {20,2,6,3}*1440, {4,10,6,3}*1440, {4,2,6,15}*1440
6-fold covers : {8,2,6,9}*1728, {8,2,6,3}*1728, {4,4,6,9}*1728, {4,4,6,3}*1728a, {4,2,6,18}*1728b, {4,2,6,6}*1728a, {24,2,6,3}*1728, {12,4,6,3}*1728, {8,6,6,3}*1728b, {4,12,6,3}*1728d, {12,2,6,6}*1728b, {4,2,6,6}*1728d, {4,6,6,6}*1728i
Permutation Representation (GAP) :
```s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 8, 9)(10,11)(12,13);;
s3 := ( 5, 8)( 6,12)( 7,10)(11,13);;
s4 := ( 5, 6)( 8,11)( 9,10)(12,13);;
poly := Group([s0,s1,s2,s3,s4]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(13)!(2,3);
s1 := Sym(13)!(1,2)(3,4);
s2 := Sym(13)!( 8, 9)(10,11)(12,13);
s3 := Sym(13)!( 5, 8)( 6,12)( 7,10)(11,13);
s4 := Sym(13)!( 5, 6)( 8,11)( 9,10)(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >;

```

to this polytope