Questions?
See the FAQ
or other info.

# Polytope of Type {2,12,6}

Atlas Canonical Name : {2,12,6}*288c
if this polytope has a name.
Group : SmallGroup(288,977)
Rank : 4
Schlafli Type : {2,12,6}
Number of vertices, edges, etc : 2, 12, 36, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,12,6,2} of size 576
{2,12,6,4} of size 1152
{2,12,6,4} of size 1152
{2,12,6,6} of size 1728
{2,12,6,6} of size 1728
Vertex Figure Of :
{2,2,12,6} of size 576
{3,2,12,6} of size 864
{4,2,12,6} of size 1152
{5,2,12,6} of size 1440
{6,2,12,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6}*144b
3-fold quotients : {2,4,6}*96a
4-fold quotients : {2,6,3}*72
6-fold quotients : {2,2,6}*48
9-fold quotients : {2,4,2}*32
12-fold quotients : {2,2,3}*24
18-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,12,12}*576b, {2,24,6}*576c, {4,12,6}*576c
3-fold covers : {2,12,18}*864b, {2,12,6}*864c, {2,12,6}*864g, {6,12,6}*864g
4-fold covers : {4,12,12}*1152c, {4,24,6}*1152a, {8,12,6}*1152c, {2,12,24}*1152b, {2,24,12}*1152c, {4,24,6}*1152d, {8,12,6}*1152f, {2,12,24}*1152e, {2,24,12}*1152f, {4,12,6}*1152c, {2,12,12}*1152b, {2,48,6}*1152a, {2,12,6}*1152e, {2,12,6}*1152f
5-fold covers : {2,60,6}*1440a, {10,12,6}*1440c, {2,12,30}*1440c
6-fold covers : {2,12,36}*1728b, {2,12,12}*1728b, {2,24,18}*1728b, {2,24,6}*1728c, {4,12,18}*1728b, {4,12,6}*1728c, {2,24,6}*1728f, {6,12,12}*1728c, {6,24,6}*1728f, {2,12,12}*1728h, {4,12,6}*1728j, {12,12,6}*1728g
Permutation Representation (GAP) :
```s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(21,30)(22,32)(23,31)(24,33)
(25,35)(26,34)(27,36)(28,38)(29,37)(40,41)(43,44)(46,47)(49,50)(52,53)(55,56)
(57,66)(58,68)(59,67)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73);;
s2 := ( 3,58)( 4,57)( 5,59)( 6,64)( 7,63)( 8,65)( 9,61)(10,60)(11,62)(12,67)
(13,66)(14,68)(15,73)(16,72)(17,74)(18,70)(19,69)(20,71)(21,40)(22,39)(23,41)
(24,46)(25,45)(26,47)(27,43)(28,42)(29,44)(30,49)(31,48)(32,50)(33,55)(34,54)
(35,56)(36,52)(37,51)(38,53);;
s3 := ( 3,42)( 4,44)( 5,43)( 6,39)( 7,41)( 8,40)( 9,45)(10,47)(11,46)(12,51)
(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,60)(22,62)(23,61)
(24,57)(25,59)(26,58)(27,63)(28,65)(29,64)(30,69)(31,71)(32,70)(33,66)(34,68)
(35,67)(36,72)(37,74)(38,73);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(21,30)(22,32)(23,31)
(24,33)(25,35)(26,34)(27,36)(28,38)(29,37)(40,41)(43,44)(46,47)(49,50)(52,53)
(55,56)(57,66)(58,68)(59,67)(60,69)(61,71)(62,70)(63,72)(64,74)(65,73);
s2 := Sym(74)!( 3,58)( 4,57)( 5,59)( 6,64)( 7,63)( 8,65)( 9,61)(10,60)(11,62)
(12,67)(13,66)(14,68)(15,73)(16,72)(17,74)(18,70)(19,69)(20,71)(21,40)(22,39)
(23,41)(24,46)(25,45)(26,47)(27,43)(28,42)(29,44)(30,49)(31,48)(32,50)(33,55)
(34,54)(35,56)(36,52)(37,51)(38,53);
s3 := Sym(74)!( 3,42)( 4,44)( 5,43)( 6,39)( 7,41)( 8,40)( 9,45)(10,47)(11,46)
(12,51)(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,60)(22,62)
(23,61)(24,57)(25,59)(26,58)(27,63)(28,65)(29,64)(30,69)(31,71)(32,70)(33,66)
(34,68)(35,67)(36,72)(37,74)(38,73);
poly := sub<Sym(74)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope