Questions?
See the FAQ
or other info.

Polytope of Type {7,2,11}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,11}*308
if this polytope has a name.
Group : SmallGroup(308,5)
Rank : 4
Schlafli Type : {7,2,11}
Number of vertices, edges, etc : 7, 7, 11, 11
Order of s0s1s2s3 : 77
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {7,2,11,2} of size 616
Vertex Figure Of :
   {2,7,2,11} of size 616
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {7,2,22}*616, {14,2,11}*616
   3-fold covers : {21,2,11}*924, {7,2,33}*924
   4-fold covers : {28,2,11}*1232, {7,2,44}*1232, {14,2,22}*1232
   5-fold covers : {35,2,11}*1540, {7,2,55}*1540
   6-fold covers : {21,2,22}*1848, {42,2,11}*1848, {7,2,66}*1848, {14,2,33}*1848
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 9,10)(11,12)(13,14)(15,16)(17,18);;
s3 := ( 8, 9)(10,11)(12,13)(14,15)(16,17);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!(2,3)(4,5)(6,7);
s1 := Sym(18)!(1,2)(3,4)(5,6);
s2 := Sym(18)!( 9,10)(11,12)(13,14)(15,16)(17,18);
s3 := Sym(18)!( 8, 9)(10,11)(12,13)(14,15)(16,17);
poly := sub<Sym(18)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope