Questions?
See the FAQ
or other info.

Polytope of Type {2,2,39}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,39}*312
if this polytope has a name.
Group : SmallGroup(312,60)
Rank : 4
Schlafli Type : {2,2,39}
Number of vertices, edges, etc : 2, 2, 39, 39
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,39,2} of size 624
   {2,2,39,4} of size 1248
   {2,2,39,6} of size 1872
Vertex Figure Of :
   {2,2,2,39} of size 624
   {3,2,2,39} of size 936
   {4,2,2,39} of size 1248
   {5,2,2,39} of size 1560
   {6,2,2,39} of size 1872
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,13}*104
   13-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,2,39}*624, {2,2,78}*624
   3-fold covers : {2,2,117}*936, {2,6,39}*936, {6,2,39}*936
   4-fold covers : {8,2,39}*1248, {2,2,156}*1248, {2,4,78}*1248a, {4,2,78}*1248, {2,4,39}*1248
   5-fold covers : {10,2,39}*1560, {2,2,195}*1560
   6-fold covers : {4,2,117}*1872, {2,2,234}*1872, {12,2,39}*1872, {4,6,39}*1872, {2,6,78}*1872b, {2,6,78}*1872c, {6,2,78}*1872
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)
(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43);;
s3 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(43)!(1,2);
s1 := Sym(43)!(3,4);
s2 := Sym(43)!( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25)(26,27)(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43);
s3 := Sym(43)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)
(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42);
poly := sub<Sym(43)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope