Questions?
See the FAQ
or other info.

Polytope of Type {6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3}*324
Also Known As : {6,3}(3,3)if this polytope has another name.
Group : SmallGroup(324,41)
Rank : 3
Schlafli Type : {6,3}
Number of vertices, edges, etc : 54, 81, 27
Order of s0s1s2 : 18
Order of s0s1s2s1 : 6
Special Properties :
   Toroidal
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,3,2} of size 648
   {6,3,4} of size 1296
   {6,3,6} of size 1944
Vertex Figure Of :
   {2,6,3} of size 648
   {4,6,3} of size 1296
   {6,6,3} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3}*108
   9-fold quotients : {6,3}*36
   27-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,6}*648c
   3-fold covers : {18,3}*972a, {6,9}*972c, {6,9}*972e, {6,3}*972
   4-fold covers : {6,12}*1296c, {12,6}*1296d, {6,3}*1296, {12,3}*1296a
   5-fold covers : {6,15}*1620
   6-fold covers : {18,6}*1944b, {6,18}*1944f, {6,18}*1944i, {6,6}*1944c, {6,6}*1944i
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)(10,19)(11,20)(12,21)(13,26)(14,27)(15,25)(16,24)
(17,22)(18,23)(31,35)(32,36)(33,34)(37,46)(38,47)(39,48)(40,53)(41,54)(42,52)
(43,51)(44,49)(45,50)(58,62)(59,63)(60,61)(64,73)(65,74)(66,75)(67,80)(68,81)
(69,79)(70,78)(71,76)(72,77);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(20,21)
(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)(36,70)
(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)(47,74)
(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);;
s2 := ( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)(10,53)
(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)(21,41)
(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,57)(58,59)(62,63)(64,79)(65,81)
(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 8)( 5, 9)( 6, 7)(10,19)(11,20)(12,21)(13,26)(14,27)(15,25)
(16,24)(17,22)(18,23)(31,35)(32,36)(33,34)(37,46)(38,47)(39,48)(40,53)(41,54)
(42,52)(43,51)(44,49)(45,50)(58,62)(59,63)(60,61)(64,73)(65,74)(66,75)(67,80)
(68,81)(69,79)(70,78)(71,76)(72,77);
s1 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(20,21)(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)
(36,70)(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)
(47,74)(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);
s2 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)
(10,53)(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)
(21,41)(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,57)(58,59)(62,63)(64,79)
(65,81)(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope