Questions?
See the FAQ
or other info.

# Polytope of Type {8,8}

Atlas Canonical Name : {8,8}*336b
if this polytope has a name.
Group : SmallGroup(336,208)
Rank : 3
Schlafli Type : {8,8}
Number of vertices, edges, etc : 21, 84, 21
Order of s0s1s2 : 8
Order of s0s1s2s1 : 3
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Dual
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{8,8,2} of size 672
Vertex Figure Of :
{2,8,8} of size 672
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,8}*672d, {8,8}*672e, {8,8}*672f
4-fold covers : {8,8}*1344c, {8,8}*1344d, {8,8}*1344e, {8,8}*1344f, {8,8}*1344g, {8,8}*1344h, {8,8}*1344j
Permutation Representation (GAP) :
```s0 := (1,2)(3,6)(4,8)(5,7);;
s1 := (2,4)(3,5)(7,8);;
s2 := (1,5)(2,7)(3,4)(6,8);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(8)!(1,2)(3,6)(4,8)(5,7);
s1 := Sym(8)!(2,4)(3,5)(7,8);
s2 := Sym(8)!(1,5)(2,7)(3,4)(6,8);
poly := sub<Sym(8)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;

```
References : None.
to this polytope