Questions?
See the FAQ
or other info.

# Polytope of Type {6,2,14}

Atlas Canonical Name : {6,2,14}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 4
Schlafli Type : {6,2,14}
Number of vertices, edges, etc : 6, 6, 14, 14
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,2,14,2} of size 672
{6,2,14,4} of size 1344
Vertex Figure Of :
{2,6,2,14} of size 672
{3,6,2,14} of size 1008
{4,6,2,14} of size 1344
{3,6,2,14} of size 1344
{4,6,2,14} of size 1344
{4,6,2,14} of size 1344
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,14}*168, {6,2,7}*168
3-fold quotients : {2,2,14}*112
4-fold quotients : {3,2,7}*84
6-fold quotients : {2,2,7}*56
7-fold quotients : {6,2,2}*48
14-fold quotients : {3,2,2}*24
21-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,2,14}*672, {6,2,28}*672, {6,4,14}*672
3-fold covers : {18,2,14}*1008, {6,6,14}*1008a, {6,6,14}*1008c, {6,2,42}*1008
4-fold covers : {12,2,28}*1344, {12,4,14}*1344, {6,4,28}*1344, {24,2,14}*1344, {6,2,56}*1344, {6,8,14}*1344, {6,4,14}*1344
5-fold covers : {6,10,14}*1680, {30,2,14}*1680, {6,2,70}*1680
Permutation Representation (GAP) :
```s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);;
s3 := ( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,20);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(20)!(3,4)(5,6);
s1 := Sym(20)!(1,5)(2,3)(4,6);
s2 := Sym(20)!( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);
s3 := Sym(20)!( 7,11)( 8, 9)(10,15)(12,13)(14,19)(16,17)(18,20);
poly := sub<Sym(20)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

```

to this polytope