Questions?
See the FAQ
or other info.

# Polytope of Type {6,14,2}

Atlas Canonical Name : {6,14,2}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 4
Schlafli Type : {6,14,2}
Number of vertices, edges, etc : 6, 42, 14, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,14,2,2} of size 672
{6,14,2,3} of size 1008
{6,14,2,4} of size 1344
{6,14,2,5} of size 1680
Vertex Figure Of :
{2,6,14,2} of size 672
{3,6,14,2} of size 1008
{4,6,14,2} of size 1344
{3,6,14,2} of size 1344
{4,6,14,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,14,2}*112
6-fold quotients : {2,7,2}*56
7-fold quotients : {6,2,2}*48
14-fold quotients : {3,2,2}*24
21-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,14,2}*672, {6,28,2}*672a, {6,14,4}*672
3-fold covers : {18,14,2}*1008, {6,14,6}*1008, {6,42,2}*1008a, {6,42,2}*1008b
4-fold covers : {12,14,4}*1344, {6,28,4}*1344, {24,14,2}*1344, {6,56,2}*1344, {6,14,8}*1344, {12,28,2}*1344, {6,28,2}*1344
5-fold covers : {6,14,10}*1680, {30,14,2}*1680, {6,70,2}*1680
Permutation Representation (GAP) :
```s0 := ( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,57)( 9,58)(10,59)
(11,60)(12,61)(13,62)(14,63)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)
(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,78)(30,79)(31,80)(32,81)
(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77);;
s1 := ( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,43)( 9,49)(10,48)
(11,47)(12,46)(13,45)(14,44)(15,57)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)
(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,64)(30,70)(31,69)(32,68)
(33,67)(34,66)(35,65)(36,78)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79);;
s2 := ( 1,23)( 2,22)( 3,28)( 4,27)( 5,26)( 6,25)( 7,24)( 8,30)( 9,29)(10,35)
(11,34)(12,33)(13,32)(14,31)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)
(43,65)(44,64)(45,70)(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)(53,76)
(54,75)(55,74)(56,73)(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);;
s3 := (85,86);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(86)!( 1,43)( 2,44)( 3,45)( 4,46)( 5,47)( 6,48)( 7,49)( 8,57)( 9,58)
(10,59)(11,60)(12,61)(13,62)(14,63)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)
(21,56)(22,64)(23,65)(24,66)(25,67)(26,68)(27,69)(28,70)(29,78)(30,79)(31,80)
(32,81)(33,82)(34,83)(35,84)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77);
s1 := Sym(86)!( 1,50)( 2,56)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,43)( 9,49)
(10,48)(11,47)(12,46)(13,45)(14,44)(15,57)(16,63)(17,62)(18,61)(19,60)(20,59)
(21,58)(22,71)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,64)(30,70)(31,69)
(32,68)(33,67)(34,66)(35,65)(36,78)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79);
s2 := Sym(86)!( 1,23)( 2,22)( 3,28)( 4,27)( 5,26)( 6,25)( 7,24)( 8,30)( 9,29)
(10,35)(11,34)(12,33)(13,32)(14,31)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)
(21,38)(43,65)(44,64)(45,70)(46,69)(47,68)(48,67)(49,66)(50,72)(51,71)(52,77)
(53,76)(54,75)(55,74)(56,73)(57,79)(58,78)(59,84)(60,83)(61,82)(62,81)(63,80);
s3 := Sym(86)!(85,86);
poly := sub<Sym(86)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```

to this polytope