Questions?
See the FAQ
or other info.

Polytope of Type {14,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,2,6}*336
if this polytope has a name.
Group : SmallGroup(336,219)
Rank : 4
Schlafli Type : {14,2,6}
Number of vertices, edges, etc : 14, 14, 6, 6
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {14,2,6,2} of size 672
   {14,2,6,3} of size 1008
   {14,2,6,4} of size 1344
   {14,2,6,3} of size 1344
   {14,2,6,4} of size 1344
   {14,2,6,4} of size 1344
Vertex Figure Of :
   {2,14,2,6} of size 672
   {4,14,2,6} of size 1344
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,6}*168, {14,2,3}*168
   3-fold quotients : {14,2,2}*112
   4-fold quotients : {7,2,3}*84
   6-fold quotients : {7,2,2}*56
   7-fold quotients : {2,2,6}*48
   14-fold quotients : {2,2,3}*24
   21-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {14,2,12}*672, {28,2,6}*672, {14,4,6}*672
   3-fold covers : {14,2,18}*1008, {14,6,6}*1008a, {14,6,6}*1008b, {42,2,6}*1008
   4-fold covers : {28,2,12}*1344, {14,4,12}*1344, {28,4,6}*1344, {14,2,24}*1344, {56,2,6}*1344, {14,8,6}*1344, {14,4,6}*1344
   5-fold covers : {14,10,6}*1680, {14,2,30}*1680, {70,2,6}*1680
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);;
s2 := (17,18)(19,20);;
s3 := (15,19)(16,17)(18,20);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s1 := Sym(20)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,14);
s2 := Sym(20)!(17,18)(19,20);
s3 := Sym(20)!(15,19)(16,17)(18,20);
poly := sub<Sym(20)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope