Questions?
See the FAQ
or other info.

# Polytope of Type {88,2}

Atlas Canonical Name : {88,2}*352
if this polytope has a name.
Group : SmallGroup(352,98)
Rank : 3
Schlafli Type : {88,2}
Number of vertices, edges, etc : 88, 88, 2
Order of s0s1s2 : 88
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{88,2,2} of size 704
{88,2,3} of size 1056
{88,2,4} of size 1408
{88,2,5} of size 1760
Vertex Figure Of :
{2,88,2} of size 704
{4,88,2} of size 1408
{4,88,2} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {44,2}*176
4-fold quotients : {22,2}*88
8-fold quotients : {11,2}*44
11-fold quotients : {8,2}*32
22-fold quotients : {4,2}*16
44-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {88,4}*704a, {176,2}*704
3-fold covers : {88,6}*1056, {264,2}*1056
4-fold covers : {88,4}*1408a, {88,8}*1408b, {88,8}*1408c, {176,4}*1408a, {176,4}*1408b, {352,2}*1408
5-fold covers : {88,10}*1760, {440,2}*1760
Permutation Representation (GAP) :
```s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(23,34)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,36)(33,35)
(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)
(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)
(66,79);;
s1 := ( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)
(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)(21,59)
(22,58)(23,79)(24,78)(25,88)(26,87)(27,86)(28,85)(29,84)(30,83)(31,82)(32,81)
(33,80)(34,68)(35,67)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)(43,70)
(44,69);;
s2 := (89,90);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(90)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(23,34)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,36)
(33,35)(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)
(55,68)(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)
(66,79);
s1 := Sym(90)!( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)
(10,48)(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)
(21,59)(22,58)(23,79)(24,78)(25,88)(26,87)(27,86)(28,85)(29,84)(30,83)(31,82)
(32,81)(33,80)(34,68)(35,67)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)
(43,70)(44,69);
s2 := Sym(90)!(89,90);
poly := sub<Sym(90)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope