Questions?
See the FAQ
or other info.

Polytope of Type {3,2,30}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,30}*360
if this polytope has a name.
Group : SmallGroup(360,154)
Rank : 4
Schlafli Type : {3,2,30}
Number of vertices, edges, etc : 3, 3, 30, 30
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,30,2} of size 720
   {3,2,30,4} of size 1440
   {3,2,30,4} of size 1440
   {3,2,30,4} of size 1440
Vertex Figure Of :
   {2,3,2,30} of size 720
   {3,3,2,30} of size 1440
   {4,3,2,30} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,15}*180
   3-fold quotients : {3,2,10}*120
   5-fold quotients : {3,2,6}*72
   6-fold quotients : {3,2,5}*60
   10-fold quotients : {3,2,3}*36
   15-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,60}*720, {6,2,30}*720
   3-fold covers : {3,2,90}*1080, {9,2,30}*1080, {3,6,30}*1080a, {3,6,30}*1080b
   4-fold covers : {3,2,120}*1440, {12,2,30}*1440, {6,2,60}*1440, {6,4,30}*1440, {3,4,30}*1440
   5-fold covers : {3,2,150}*1800, {15,2,30}*1800
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,17)(15,16)(18,19)(20,23)(21,22)(24,25)
(26,29)(27,28)(30,33)(31,32);;
s3 := ( 4,20)( 5,14)( 6,12)( 7,22)( 8,10)( 9,30)(11,16)(13,26)(15,24)(17,32)
(18,21)(19,31)(23,28)(25,27)(29,33);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(2,3);
s1 := Sym(33)!(1,2);
s2 := Sym(33)!( 6, 7)( 8, 9)(10,11)(12,13)(14,17)(15,16)(18,19)(20,23)(21,22)
(24,25)(26,29)(27,28)(30,33)(31,32);
s3 := Sym(33)!( 4,20)( 5,14)( 6,12)( 7,22)( 8,10)( 9,30)(11,16)(13,26)(15,24)
(17,32)(18,21)(19,31)(23,28)(25,27)(29,33);
poly := sub<Sym(33)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope