Questions?
See the FAQ
or other info.

Polytope of Type {8,4,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4,2,3}*384b
if this polytope has a name.
Group : SmallGroup(384,12852)
Rank : 5
Schlafli Type : {8,4,2,3}
Number of vertices, edges, etc : 8, 16, 4, 3, 3
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,4,2,3,2} of size 768
Vertex Figure Of :
   {2,8,4,2,3} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,2,3}*192
   4-fold quotients : {2,4,2,3}*96, {4,2,2,3}*96
   8-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,4,2,3}*768a, {8,8,2,3}*768a, {8,8,2,3}*768d, {8,4,2,6}*768b
   3-fold covers : {8,4,2,9}*1152b, {8,4,6,3}*1152b, {8,12,2,3}*1152b, {24,4,2,3}*1152b
   5-fold covers : {8,4,2,15}*1920b, {8,20,2,3}*1920b, {40,4,2,3}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 6)( 5, 8)( 7,10)(11,14)(13,15);;
s1 := ( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,16);;
s2 := ( 2, 4)( 3, 6)( 5, 8)( 9,12)(11,15)(13,14);;
s3 := (18,19);;
s4 := (17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(19)!( 2, 3)( 4, 6)( 5, 8)( 7,10)(11,14)(13,15);
s1 := Sym(19)!( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,11)(10,13)(12,15)(14,16);
s2 := Sym(19)!( 2, 4)( 3, 6)( 5, 8)( 9,12)(11,15)(13,14);
s3 := Sym(19)!(18,19);
s4 := Sym(19)!(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 

to this polytope