Questions?
See the FAQ
or other info.

Polytope of Type {48,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {48,4}*384a
Also Known As : {48,4|2}. if this polytope has another name.
Group : SmallGroup(384,1684)
Rank : 3
Schlafli Type : {48,4}
Number of vertices, edges, etc : 48, 96, 4
Order of s0s1s2 : 48
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {48,4,2} of size 768
Vertex Figure Of :
   {2,48,4} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {24,4}*192a, {48,2}*192
   3-fold quotients : {16,4}*128a
   4-fold quotients : {12,4}*96a, {24,2}*96
   6-fold quotients : {8,4}*64a, {16,2}*64
   8-fold quotients : {12,2}*48, {6,4}*48a
   12-fold quotients : {4,4}*32, {8,2}*32
   16-fold quotients : {6,2}*24
   24-fold quotients : {2,4}*16, {4,2}*16
   32-fold quotients : {3,2}*12
   48-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {48,4}*768a, {48,8}*768c, {48,8}*768d, {96,4}*768a, {96,4}*768b
   3-fold covers : {144,4}*1152a, {48,12}*1152a, {48,12}*1152b
   5-fold covers : {240,4}*1920a, {48,20}*1920a
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,106)(  8,108)
(  9,107)( 10,103)( 11,105)( 12,104)( 13,109)( 14,111)( 15,110)( 16,112)
( 17,114)( 18,113)( 19,118)( 20,120)( 21,119)( 22,115)( 23,117)( 24,116)
( 25,127)( 26,129)( 27,128)( 28,130)( 29,132)( 30,131)( 31,121)( 32,123)
( 33,122)( 34,124)( 35,126)( 36,125)( 37,139)( 38,141)( 39,140)( 40,142)
( 41,144)( 42,143)( 43,133)( 44,135)( 45,134)( 46,136)( 47,138)( 48,137)
( 49,145)( 50,147)( 51,146)( 52,148)( 53,150)( 54,149)( 55,154)( 56,156)
( 57,155)( 58,151)( 59,153)( 60,152)( 61,157)( 62,159)( 63,158)( 64,160)
( 65,162)( 66,161)( 67,166)( 68,168)( 69,167)( 70,163)( 71,165)( 72,164)
( 73,175)( 74,177)( 75,176)( 76,178)( 77,180)( 78,179)( 79,169)( 80,171)
( 81,170)( 82,172)( 83,174)( 84,173)( 85,187)( 86,189)( 87,188)( 88,190)
( 89,192)( 90,191)( 91,181)( 92,183)( 93,182)( 94,184)( 95,186)( 96,185);;
s1 := (  1,  2)(  4,  5)(  7, 11)(  8, 10)(  9, 12)( 13, 14)( 16, 17)( 19, 23)
( 20, 22)( 21, 24)( 25, 32)( 26, 31)( 27, 33)( 28, 35)( 29, 34)( 30, 36)
( 37, 44)( 38, 43)( 39, 45)( 40, 47)( 41, 46)( 42, 48)( 49, 62)( 50, 61)
( 51, 63)( 52, 65)( 53, 64)( 54, 66)( 55, 71)( 56, 70)( 57, 72)( 58, 68)
( 59, 67)( 60, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 95)( 77, 94)( 78, 96)
( 79, 86)( 80, 85)( 81, 87)( 82, 89)( 83, 88)( 84, 90)( 97,122)( 98,121)
( 99,123)(100,125)(101,124)(102,126)(103,131)(104,130)(105,132)(106,128)
(107,127)(108,129)(109,134)(110,133)(111,135)(112,137)(113,136)(114,138)
(115,143)(116,142)(117,144)(118,140)(119,139)(120,141)(145,182)(146,181)
(147,183)(148,185)(149,184)(150,186)(151,191)(152,190)(153,192)(154,188)
(155,187)(156,189)(157,170)(158,169)(159,171)(160,173)(161,172)(162,174)
(163,179)(164,178)(165,180)(166,176)(167,175)(168,177);;
s2 := (  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 53)(  6, 54)(  7, 55)(  8, 56)
(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)( 16, 64)
( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)( 24, 72)
( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)( 32, 80)
( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)( 40, 88)
( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)( 48, 96)
( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)(104,152)
(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)
(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)
(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)
(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)
(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)(144,192);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,106)
(  8,108)(  9,107)( 10,103)( 11,105)( 12,104)( 13,109)( 14,111)( 15,110)
( 16,112)( 17,114)( 18,113)( 19,118)( 20,120)( 21,119)( 22,115)( 23,117)
( 24,116)( 25,127)( 26,129)( 27,128)( 28,130)( 29,132)( 30,131)( 31,121)
( 32,123)( 33,122)( 34,124)( 35,126)( 36,125)( 37,139)( 38,141)( 39,140)
( 40,142)( 41,144)( 42,143)( 43,133)( 44,135)( 45,134)( 46,136)( 47,138)
( 48,137)( 49,145)( 50,147)( 51,146)( 52,148)( 53,150)( 54,149)( 55,154)
( 56,156)( 57,155)( 58,151)( 59,153)( 60,152)( 61,157)( 62,159)( 63,158)
( 64,160)( 65,162)( 66,161)( 67,166)( 68,168)( 69,167)( 70,163)( 71,165)
( 72,164)( 73,175)( 74,177)( 75,176)( 76,178)( 77,180)( 78,179)( 79,169)
( 80,171)( 81,170)( 82,172)( 83,174)( 84,173)( 85,187)( 86,189)( 87,188)
( 88,190)( 89,192)( 90,191)( 91,181)( 92,183)( 93,182)( 94,184)( 95,186)
( 96,185);
s1 := Sym(192)!(  1,  2)(  4,  5)(  7, 11)(  8, 10)(  9, 12)( 13, 14)( 16, 17)
( 19, 23)( 20, 22)( 21, 24)( 25, 32)( 26, 31)( 27, 33)( 28, 35)( 29, 34)
( 30, 36)( 37, 44)( 38, 43)( 39, 45)( 40, 47)( 41, 46)( 42, 48)( 49, 62)
( 50, 61)( 51, 63)( 52, 65)( 53, 64)( 54, 66)( 55, 71)( 56, 70)( 57, 72)
( 58, 68)( 59, 67)( 60, 69)( 73, 92)( 74, 91)( 75, 93)( 76, 95)( 77, 94)
( 78, 96)( 79, 86)( 80, 85)( 81, 87)( 82, 89)( 83, 88)( 84, 90)( 97,122)
( 98,121)( 99,123)(100,125)(101,124)(102,126)(103,131)(104,130)(105,132)
(106,128)(107,127)(108,129)(109,134)(110,133)(111,135)(112,137)(113,136)
(114,138)(115,143)(116,142)(117,144)(118,140)(119,139)(120,141)(145,182)
(146,181)(147,183)(148,185)(149,184)(150,186)(151,191)(152,190)(153,192)
(154,188)(155,187)(156,189)(157,170)(158,169)(159,171)(160,173)(161,172)
(162,174)(163,179)(164,178)(165,180)(166,176)(167,175)(168,177);
s2 := Sym(192)!(  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 53)(  6, 54)(  7, 55)
(  8, 56)(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)
( 16, 64)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)
( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)
( 32, 80)( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)
( 40, 88)( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)
( 48, 96)( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)
(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)
(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)
(120,168)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)
(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)
(136,184)(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)
(144,192);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope