Questions?
See the FAQ
or other info.

Polytope of Type {4,6,2}

Atlas Canonical Name : {4,6,2}*384a
if this polytope has a name.
Group : SmallGroup(384,17948)
Rank : 4
Schlafli Type : {4,6,2}
Number of vertices, edges, etc : 16, 48, 24, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,6,2,2} of size 768
{4,6,2,3} of size 1152
{4,6,2,5} of size 1920
Vertex Figure Of :
{2,4,6,2} of size 768
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {4,6,2}*96c
8-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,12,2}*768b, {4,12,2}*768c, {4,6,4}*768b, {8,6,2}*768b, {8,6,2}*768c, {4,6,2}*768a
3-fold covers : {4,18,2}*1152a, {4,6,6}*1152a, {4,6,6}*1152b
5-fold covers : {4,6,10}*1920a, {4,30,2}*1920a
Permutation Representation (GAP) :
```s0 := ( 5, 7)( 6, 8)( 9,11)(10,12);;
s1 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12);;
s2 := ( 5, 9)( 6,10)( 7,11)( 8,12);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(14)!( 5, 7)( 6, 8)( 9,11)(10,12);
s1 := Sym(14)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12);
s2 := Sym(14)!( 5, 9)( 6,10)( 7,11)( 8,12);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;

```

to this polytope